测量误差及数据处理的基本知识课件.ppt

上传人(卖家):晟晟文业 文档编号:5150855 上传时间:2023-02-15 格式:PPT 页数:34 大小:443KB
下载 相关 举报
测量误差及数据处理的基本知识课件.ppt_第1页
第1页 / 共34页
测量误差及数据处理的基本知识课件.ppt_第2页
第2页 / 共34页
测量误差及数据处理的基本知识课件.ppt_第3页
第3页 / 共34页
测量误差及数据处理的基本知识课件.ppt_第4页
第4页 / 共34页
测量误差及数据处理的基本知识课件.ppt_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、测量误差及数据处理主讲人:项霞 四川大学水利水电学院 二零零八年八月 测量误差及数据处理第 七 讲本本 次次 授授 课课目的和要求目的和要求本次授课的重本次授课的重点与难点分析点与难点分析误差的定义及分类误差的定义及分类衡量观测值精度的指标(重点)衡量观测值精度的指标(重点)误差传播定律(难点)误差传播定律(难点)平均值及其中误差平均值及其中误差 衡量观测值精度的指标衡量观测值精度的指标误差传播定律误差传播定律测量误差及数据处理一、一、测量误差的定义及其来源测量误差的定义及其来源1 1、测量误差的定义、测量误差的定义 被观测量客观上存在一个真实值,简称真值。对该量进行观测得到被观测量客观上存在

2、一个真实值,简称真值。对该量进行观测得到观测值。观测值与真值之差为真误差,即观测值。观测值与真值之差为真误差,即真误差真误差=观测值观测值-真值真值真值观测值差X真误lXl 在测量工作中,对某量的观测值与该量的真值间存在着必然的差异,这在测量工作中,对某量的观测值与该量的真值间存在着必然的差异,这个差异称为误差。但有时由于人为的疏忽或措施不周也会造成观测值与个差异称为误差。但有时由于人为的疏忽或措施不周也会造成观测值与真值之间的较大差异,这不属于误差而是粗差。误差与粗差的根本区别真值之间的较大差异,这不属于误差而是粗差。误差与粗差的根本区别在于前者是不可避免的,而后者是有可能避免的。在于前者是

3、不可避免的,而后者是有可能避免的。测量误差及数据处理2 2、测量误差的来源、测量误差的来源n测量工作是在一定条件下进行的,外界环境、观测者的技术测量工作是在一定条件下进行的,外界环境、观测者的技术水平和仪器本身构造的不完善等原因,都可能导致测量误差水平和仪器本身构造的不完善等原因,都可能导致测量误差的产生。通常把的产生。通常把测量仪器、观测者的技术水平和外界环境测量仪器、观测者的技术水平和外界环境三三个方面综合起来,称为个方面综合起来,称为观测条件观测条件。观测条件不理想和不断变。观测条件不理想和不断变化,是产生测量误差的根本原因。通常把观测条件相同的各化,是产生测量误差的根本原因。通常把观测

4、条件相同的各次观测,称为同精度观测;观测条件不同的各次观测,称为次观测,称为同精度观测;观测条件不同的各次观测,称为不同精度观测。不同精度观测。n误差通常通过多余观测产生的差异表现出来。误差通常通过多余观测产生的差异表现出来。测量误差及数据处理具体来说,测量误差主要来自以下三个方面:具体来说,测量误差主要来自以下三个方面:(1)(1)外界条件外界条件 主要指观测环境中气温、气压、空气湿度和清晰度、风力以主要指观测环境中气温、气压、空气湿度和清晰度、风力以及大气折光等因素的不断变化,导致测量结果中带有误差。及大气折光等因素的不断变化,导致测量结果中带有误差。(2)(2)仪器条件仪器条件 仪器在加

5、工和装配等工艺过程中,不能保证仪器的结构能满仪器在加工和装配等工艺过程中,不能保证仪器的结构能满足各种几何关系,这样的仪器必然会给测量带来误差。足各种几何关系,这样的仪器必然会给测量带来误差。(3)(3)观测者的自身条件观测者的自身条件 由于观测者感官鉴别能力所限以及技术熟练程度不同,也会由于观测者感官鉴别能力所限以及技术熟练程度不同,也会在仪器对中、整平和瞄准等方面产生误差。在仪器对中、整平和瞄准等方面产生误差。测量误差及数据处理二、误差分类二、误差分类 测量误差按其对测量结果影响的性质,可分为测量误差按其对测量结果影响的性质,可分为粗差粗差系统误差系统误差偶然误差。偶然误差。测量误差及数据

6、处理1 1、粗差、粗差n粗差也称错误,是由于观测者使用仪器不正确或疏忽大粗差也称错误,是由于观测者使用仪器不正确或疏忽大意、或因外界条件发生意外的显著变动引起的差错。意、或因外界条件发生意外的显著变动引起的差错。n粗差数值偏大,使观测结果显著偏离真值。粗差数值偏大,使观测结果显著偏离真值。n严格遵守测量规范、工作仔细谨慎并对观测结果进行必严格遵守测量规范、工作仔细谨慎并对观测结果进行必要的检核可以避免和发现粗差。要的检核可以避免和发现粗差。测量误差及数据处理2 2、系统误差系统误差在相同的观测条件下,对某量进行了在相同的观测条件下,对某量进行了n n次观测,如果误差出次观测,如果误差出现的大小

7、和符号均相同或按一定的规律变化,这种误差称为现的大小和符号均相同或按一定的规律变化,这种误差称为系统误差。系统误差。系统误差一般具有累积性。系统误差一般具有累积性。系统误差产生的主要原因之一,是由于仪器设备制造不完系统误差产生的主要原因之一,是由于仪器设备制造不完善。善。测量误差及数据处理 例如:例如:用一把名义长度为用一把名义长度为50m50m的钢尺去量距,经检定钢尺的实际的钢尺去量距,经检定钢尺的实际长度为长度为50.005 m50.005 m,则每量一尺,就带有,则每量一尺,就带有+0.005 m+0.005 m的误差的误差(“+”(“+”表示在所量距离值中应加上表示在所量距离值中应加上

8、),丈量的尺段越多,所产生的误,丈量的尺段越多,所产生的误差越大。所以这种误差与所丈量的距离成正比。差越大。所以这种误差与所丈量的距离成正比。再如:再如:在水准测量时,当视准轴与水准管轴不平行而产生夹角时,在水准测量时,当视准轴与水准管轴不平行而产生夹角时,对水准尺的读数所产生的误差为对水准尺的读数所产生的误差为L L*i/i/(=206265=206265,是一弧度对应的秒值是一弧度对应的秒值),它与水准仪至水准尺之间的距离,它与水准仪至水准尺之间的距离L L成正成正比,所以这种误差按某种规律变化。比,所以这种误差按某种规律变化。测量误差及数据处理系统误差具有明显的规律性和累积性,对测量结果

9、的影响很系统误差具有明显的规律性和累积性,对测量结果的影响很大。但是由于系统误差的大小和符号有一定的规律,所以可大。但是由于系统误差的大小和符号有一定的规律,所以可以采取措施加以消除或减少其影响:以采取措施加以消除或减少其影响:n(1 1)测定其大小,对观测值加以改正)测定其大小,对观测值加以改正n(2 2)采用对称观测的方法)采用对称观测的方法n(3 3)检校仪器)检校仪器测量误差及数据处理3 3、偶然误差偶然误差在相同的观测条件下,对某量进行了在相同的观测条件下,对某量进行了n n次观测,如果误差出现次观测,如果误差出现的大小和符号均不一定,则这种误差称为偶然误差,又称为随的大小和符号均不

10、一定,则这种误差称为偶然误差,又称为随机误差。机误差。例如例如,用经纬仪测角时的照准误差,钢尺量距时的读数误差等,用经纬仪测角时的照准误差,钢尺量距时的读数误差等,都属于偶然误差。都属于偶然误差。偶然误差,就其个别值而言,在观测前我们确实不能预知其出偶然误差,就其个别值而言,在观测前我们确实不能预知其出现的大小和符号。但若在一定的观测条件下,对某量进行多次现的大小和符号。但若在一定的观测条件下,对某量进行多次观测,误差列却呈现出一定的规律性,称为统计规律。而且,观测,误差列却呈现出一定的规律性,称为统计规律。而且,随着观测次数的增加,偶然误差的规律性表现得更加明显。随着观测次数的增加,偶然误差

11、的规律性表现得更加明显。测量误差及数据处理n例如:某一测区在相同条件下观测了例如:某一测区在相同条件下观测了358358个三角形的全部内角,个三角形的全部内角,计算计算358358个三角形内角观测值之和的真误差,将真误差取误差个三角形内角观测值之和的真误差,将真误差取误差区间为区间为3”3”,并按绝对值大小进行排列,分别统计在各区间的,并按绝对值大小进行排列,分别统计在各区间的正负误差出现的频率正负误差出现的频率k kn n,结果列于下表,结果列于下表 :测量误差及数据处理由上表统计总结出偶然误差具有如下四个特征:由上表统计总结出偶然误差具有如下四个特征:在一定的观测条件下,偶然误差的绝对值不

12、会超过一定的限值在一定的观测条件下,偶然误差的绝对值不会超过一定的限值(本本例为例为24)24);绝对值小的误差比绝对值大的误差出现的机会多绝对值小的误差比绝对值大的误差出现的机会多(或概率大或概率大);绝对值相等的正、负误差出现的机会相等;绝对值相等的正、负误差出现的机会相等;在相同条件下,同一量的同精度观测,其偶然误差的算术平均值,在相同条件下,同一量的同精度观测,其偶然误差的算术平均值,随着观测次数的无限增大而趋于零。随着观测次数的无限增大而趋于零。测量误差及数据处理第一个特性说明偶然误差的第一个特性说明偶然误差的“有界性有界性”。它说明偶然误差的。它说明偶然误差的绝对值有个限值,若超过

13、这个限值,说明观测条件不正常或绝对值有个限值,若超过这个限值,说明观测条件不正常或有粗差存在;有粗差存在;第二个特性反映了偶然误差的第二个特性反映了偶然误差的“密集性密集性”,即越是靠近,即越是靠近00,误差分布越密集;误差分布越密集;第三个特性反映了偶然误差的第三个特性反映了偶然误差的“对称性对称性”,即在各个区间内,即在各个区间内,正负误差个数相等或极为接近;正负误差个数相等或极为接近;第四个特性反映了偶然误差的第四个特性反映了偶然误差的“抵偿性抵偿性”,它可由第三特性,它可由第三特性导出,即在大量的偶然误差中,正负误差有相互抵消的特征。导出,即在大量的偶然误差中,正负误差有相互抵消的特征

14、。因此,当因此,当n n无限增大时,偶然误差的算术平均值应趋于零。无限增大时,偶然误差的算术平均值应趋于零。测量误差及数据处理6.26.2、衡量观测值精度的指标衡量观测值精度的指标测量成果中都不可避免地含有误差,在测量工作中,使用测量成果中都不可避免地含有误差,在测量工作中,使用“精度精度”来判断观测成果质量的好坏。来判断观测成果质量的好坏。所谓精度,就是指误差分布的密集或离散程度。误差分布密所谓精度,就是指误差分布的密集或离散程度。误差分布密集,误差就小,精度就高;反之,误差分布离散,误差就大,集,误差就小,精度就高;反之,误差分布离散,误差就大,精度就低。精度就低。衡量观测值精度的衡量观测

15、值精度的指标指标主要有:主要有:中误差中误差 相对误差相对误差 极限误差极限误差 测量误差及数据处理一、一、中误差及其计算中误差及其计算1 1 中误差的定义中误差的定义n在相同的观测条件下,对同一未知量进行在相同的观测条件下,对同一未知量进行n n次观测,所得各次观测,所得各个真误差平方的平均值,再取其平方根,称为中误差,用个真误差平方的平均值,再取其平方根,称为中误差,用m m表示,即:表示,即:n式中式中为真误差为真误差的平方和,的平方和,n n为观测次数。此式为为观测次数。此式为定义式定义式。nm注意:注意:一组观测中的每一个观测值,都具有相同的精度。一组观测中的每一个观测值,都具有相同

16、的精度。也就是说,也就是说,中误差仅是一组真误差的代表值中误差仅是一组真误差的代表值,代表了这一组测量中任一个代表了这一组测量中任一个观测值的精度观测值的精度。所以,通常把。所以,通常把m m称为观测值中误差或一次观测值中误差。称为观测值中误差或一次观测值中误差。测量误差及数据处理2 2 用真误差计算中误差用真误差计算中误差 有时,我们可以知道某些量的真值,这样,就可很容有时,我们可以知道某些量的真值,这样,就可很容易地求得观测值的真误差。例如,三角形内角和的真值为易地求得观测值的真误差。例如,三角形内角和的真值为180180,通过观测三角形的三个内角,就可以求得三角形内,通过观测三角形的三个

17、内角,就可以求得三角形内角和的真误差角和的真误差(即三角形的闭合差即三角形的闭合差),据此,就可以利用上,据此,就可以利用上式计算中误差。式计算中误差。nm测量误差及数据处理3 3 用改正数计算中误差用改正数计算中误差 所谓改正数,就是最或是值与观测值之差,用所谓改正数,就是最或是值与观测值之差,用v v表示,即:表示,即:v=L-lv=L-l式中式中v v为观测值的改正数;为观测值的改正数;l l为观测值;为观测值;L L为观测值的最或是值。为观测值的最或是值。设对某个量进行设对某个量进行n n次观测,观测值为次观测,观测值为lili(i=1,2i=1,2n)n),则,则它的最或是值就是它的

18、最或是值就是n n个观测值的算术平均值,即个观测值的算术平均值,即 nlnlllLn21测量误差及数据处理于是改正数为于是改正数为viviL Ll li i (i i,n n)根据误差理论的推导根据误差理论的推导(此处从略此处从略),可得白塞尔公式:,可得白塞尔公式:上式求得的为一次观测值的中误差。这为中误差的上式求得的为一次观测值的中误差。这为中误差的计算式计算式。1nvvm测量误差及数据处理例例1 1n某段距离用钢尺进行某段距离用钢尺进行6 6次等精度丈量,其结果如下表,试计算该距离观次等精度丈量,其结果如下表,试计算该距离观测值中误差。测值中误差。n解:部分计算如表中所示,观测值中误差为

19、解:部分计算如表中所示,观测值中误差为序号序号观测值观测值l lv vvvvv1 1256.565256.565-3mm-3mm9 92 2256.563256.563-5-525253 3256.570256.570+2+24 44 4256.573256.573+5+525255 5256.571256.571+3+39 96 6256.566256.566-2-24 4l=l=256.568256.568v=0v=0vv=76vv=76mmnvvm9.316761测量误差及数据处理二、二、相对误差相对误差 中误差和真误差都是绝对误差,误差的大小与观测量的中误差和真误差都是绝对误差,误差的

20、大小与观测量的大小无关。然而,有些量如长度,绝对误差不能全面反映大小无关。然而,有些量如长度,绝对误差不能全面反映观测精度,因为长度丈量的误差与长度大小有关。观测精度,因为长度丈量的误差与长度大小有关。例如,分别丈量了两段不同长度的距离,一段为例如,分别丈量了两段不同长度的距离,一段为100m100m,另一段为另一段为200m200m,但中误差皆为,但中误差皆为0.02m0.02m。显然不能认为这两。显然不能认为这两段距离观测成果的精度相同。为此,需要引入段距离观测成果的精度相同。为此,需要引入“相对误差相对误差”的概念,以便能更客观地反映实际测量精度。的概念,以便能更客观地反映实际测量精度。

21、测量误差及数据处理 相对误差的定义为:中误差的绝对值与相应观测值之比,用相对误差的定义为:中误差的绝对值与相应观测值之比,用K K表示。表示。相对误差习惯于用分子为相对误差习惯于用分子为1 1的分数形式表示,分母愈大,表的分数形式表示,分母愈大,表示相对误差愈小,精度也就愈高。示相对误差愈小,精度也就愈高。K1=0.02/100=1/5000K1=0.02/100=1/5000 K2=0.02/200=1/10000 K2=0.02/200=1/10000测量误差及数据处理三、三、极限误差极限误差 根据偶然误差的第一个特性,在一定的观测条件下,偶然根据偶然误差的第一个特性,在一定的观测条件下,

22、偶然误差的绝对值不会超过一定的限值,这个限值就是极限误差,误差的绝对值不会超过一定的限值,这个限值就是极限误差,简称限差。简称限差。限差是偶然误差的限制值,用作观测成果取舍的标准。如限差是偶然误差的限制值,用作观测成果取舍的标准。如果观测值的偶然误差超过限差,则认为该观测值不合格,应舍果观测值的偶然误差超过限差,则认为该观测值不合格,应舍去不用。因此,测量上常取三倍中误差作为极限误差去不用。因此,测量上常取三倍中误差作为极限误差限限,也称,也称允许误差,即:允许误差,即:限限=3m=3m测量误差及数据处理6.3 6.3 误差传播定律误差传播定律 对于能直接观测的量对于能直接观测的量(如角度、距

23、离、高差等如角度、距离、高差等),经过多次,经过多次观测后,便可通过真误差或改正数计算出观测值的中误差,作观测后,便可通过真误差或改正数计算出观测值的中误差,作为评定观测值精度的标准。为评定观测值精度的标准。但在实际工作中,某些未知量不可能或不便于直接进行观但在实际工作中,某些未知量不可能或不便于直接进行观测,而需要由另一些直接观测量根据一定的函数关系计算出来,测,而需要由另一些直接观测量根据一定的函数关系计算出来,这些未知量即为观测值的函数。这些未知量即为观测值的函数。例如,在水准测量中,两点间的高差例如,在水准测量中,两点间的高差h=a-bh=a-b,则,则h h是直接观是直接观测值测值a

24、 a和和b b的函数;的函数;在三角高程测量的计算公式中,如果觇标高在三角高程测量的计算公式中,如果觇标高v v等于仪器高等于仪器高i i,则则h=ltanh=ltan,这时,高差,这时,高差h h就是观测值就是观测值l l和和的函数,等等。的函数,等等。测量误差及数据处理 本节所要讨论的就是在观测值中误差已知的情况下,如何本节所要讨论的就是在观测值中误差已知的情况下,如何求观测值函数中误差的问题。阐述观测值中误差与函数中误差求观测值函数中误差的问题。阐述观测值中误差与函数中误差之间数学关系的定律,称为误差传播定律。之间数学关系的定律,称为误差传播定律。一、一、线性函数线性函数1 1 倍数函数

25、倍数函数 设有函数设有函数Z=KxZ=Kx 式中式中x x为直接观测值,其中误差为为直接观测值,其中误差为m mx x;为常数;为常数;Z Z为观测值为观测值x x 的函数。的函数。若对若对x x作作n n次同精度观测,则有:次同精度观测,则有:m m2 22 2m mx x2 2 或或 m mm mx x 上式表明:对于倍数函数,函数的中误差等于观测值中误差上式表明:对于倍数函数,函数的中误差等于观测值中误差的的K K倍。倍。测量误差及数据处理2 2 和、差函数和、差函数 设有函数设有函数Z=xZ=xy y 式中,式中,x x、y y为两个相互独立的观测值,均作了为两个相互独立的观测值,均作

26、了n n次观测,其中次观测,其中误差分别为误差分别为mxmx和和mymy。用同样的方法可推导出。用同样的方法可推导出:或或222yxZmmm22yxZmmm测量误差及数据处理3 3 一般线性函数一般线性函数 设有函数设有函数 式中,式中,为常数为常数;为独立观测值,为独立观测值,其相应的中误差分别为其相应的中误差分别为 。根据倍数函数与和。根据倍数函数与和差函数的中误差公式,可列出求一般线性函数中误差的公差函数的中误差公式,可列出求一般线性函数中误差的公式为:式为:nnxKxKxKZ221122222112)()()(nnZmKmKmKmnKKK、21nxxx、21nmm、21m测量误差及数据

27、处理二、二、非线性函数非线性函数 设有非线性函数设有非线性函数Z=fZ=f()式中,式中,为独立观测值,其相应的中误差分别为独立观测值,其相应的中误差分别为为 。则有则有 上式是误差传播定律的一般形式,其他形式的函数都是它的特例,上式是误差传播定律的一般形式,其他形式的函数都是它的特例,所以该式具有普遍意义。所以该式具有普遍意义。nmm、21mnxxx、21nxxx、212222222121nnZmxfmxfmxfm例2:P109 例3例3:P110例5测量误差及数据处理6.4 6.4 算术平均值及其中误差算术平均值及其中误差 在相同的观测条件下对某未知量进行了一组等精度观测,其观在相同的观测

28、条件下对某未知量进行了一组等精度观测,其观测值分别为测值分别为 ,观测值的真值为,观测值的真值为X X,则观测值的真误差为:,则观测值的真误差为:将等式两边取和并除以观测次数将等式两边取和并除以观测次数n,n,得:得:/n/nl/n-Xl/n-X 式中式中l l/n/n称为算术平均值,习惯上以称为算术平均值,习惯上以L L表示;当观测次数表示;当观测次数n n无限增大时,根据偶然误差的第四特性,式中无限增大时,根据偶然误差的第四特性,式中/n/n趋于零。于趋于零。于是有:是有:L=XL=X。上式表明,当观测次数无限增多时,各个观测值的算术平均值上式表明,当观测次数无限增多时,各个观测值的算术平

29、均值趋近于未知量的真值。当趋近于未知量的真值。当n n为有限值时,通常取算术平均值为最可为有限值时,通常取算术平均值为最可靠值靠值(最或是值最或是值),并以它作为测量的最后成果。,并以它作为测量的最后成果。nlll、21,2211XlXlXlnn测量误差及数据处理 算术平均值的一般表达式为:算术平均值的一般表达式为:由于观测值由于观测值 的真误差的真误差ii一般是不知道的,所以实际工作一般是不知道的,所以实际工作中常采用观测值的改正数中常采用观测值的改正数vivi来计算中误差。来计算中误差。各观测值的改正数:各观测值的改正数:,将上,将上式两边求和,有式两边求和,有:v v=nL=nL-l l

30、 因因L=l/nL=l/n,所以,所以v v=0=0。此式可作为改正数计算正确性的。此式可作为改正数计算正确性的检查。检查。算得改正数后,可计算观测值的中误差:算得改正数后,可计算观测值的中误差:nlnlllLn21nnlLvlLvlLv,22111nvvm测量误差及数据处理由于算术平均值是观测值的线性函数,即:由于算术平均值是观测值的线性函数,即:因是同精度观测,各观测值的中误差均为因是同精度观测,各观测值的中误差均为m m。设算术平均值的。设算术平均值的中误差为中误差为M M,则按线性函数中误差传播定律公式,得:,则按线性函数中误差传播定律公式,得:即即 上式表明,算术平均值的中误差与观测

31、次数的平方根成反比,上式表明,算术平均值的中误差与观测次数的平方根成反比,或者说,算术平均值的精度比各观测值的精度提高了或者说,算术平均值的精度比各观测值的精度提高了 倍。倍。nlnlllLn21222222111mnmnmnMnmMn测量误差及数据处理例4n用DJ6型经纬仪观测某水平角4测回,观测值为2483218、248 3154 、248 3142 、248 3206 。试求一测回观测值的中误差、该角最或是值及其中误差。n解:最或是值 L=(2483218+248 3154+248 3142+248 3206)/4=2483200 v=0 vv=12 则一测回观测值中误差 =2 最或是值

32、中误差 =m/2=1 4 3 2 16,18,6,18vvvvnmM1nvvm权权(weight)(weight)的概念的概念 2 2、规律、规律:权与中误差的平方成反比,故观测值精度愈高,其权愈权与中误差的平方成反比,故观测值精度愈高,其权愈大。大。22022iiimmmp0m 权权P=1P=1的中误差称为的中误差称为“单位权中误差单位权中误差”,通常用通常用 或或 表示,所以权也表示为:表示,所以权也表示为:式中:式中:C C为任意正数,为任意正数,m mi i为中误差。为中误差。2iimcp 1 1、定义:权用、定义:权用P P表示,即:表示,即:测量误差及数据处理n对于不同精度观测值的最或是值,由于各观测值的精度对于不同精度观测值的最或是值,由于各观测值的精度不同,中误差也不相同,因此一组观测值的中误差不等不同,中误差也不相同,因此一组观测值的中误差不等于一次观测值中误差,所以其最或是值不是算术平均值。于一次观测值中误差,所以其最或是值不是算术平均值。需要引入权,精度高的观测值权大,精度低的观测值权需要引入权,精度高的观测值权大,精度低的观测值权小。小。n最或是值为加权平均值最或是值为加权平均值n最或是值的中误差为:最或是值的中误差为:212211PPlPPPlPlPlPLnnn)1(PnPvvM

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(测量误差及数据处理的基本知识课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|