1、27.1 27.1 圆的认识圆的认识奥运五环奥运五环福建土楼福建土楼50%20%30%OACB半径有:半径有:OA、OB、OC直径:直径:ABOBCA 1.1.如图如图,半径有半径有:_:_OAOA、OBOB、OCOC 2.2.如图如图,弦有弦有:_:_ABAB、BCBCACACOBCA 1.1.如图如图,弧有弧有:_:_ABABBCBCABABBCBC2.劣弧劣弧有:有:优弧优弧有:有:A ACBBABAC你知道优弧与劣弧的区别么?你知道优弧与劣弧的区别么?判断判断:半圆是弧,但弧不一定是半圆半圆是弧,但弧不一定是半圆.()1 1、圆是对称图形吗?它有哪些对称性?、圆是对称图形吗?它有哪些对
2、称性?回顾:回顾:圆既是轴对称图形,又是中心对称图圆既是轴对称图形,又是中心对称图形形,也是旋转对称图形。旋转角度可以是任也是旋转对称图形。旋转角度可以是任意度数。对称轴是过圆心任意一条直线。意度数。对称轴是过圆心任意一条直线。2 2、能否用手中的圆演示出它的各种对称、能否用手中的圆演示出它的各种对称性呢?圆的对称轴在哪里,对称中心和性呢?圆的对称轴在哪里,对称中心和旋转中心在哪里?旋转中心在哪里?OACBNMD圆是轴对称图形圆是轴对称图形,经过经过圆心圆心的的每一条每一条直线直线都是它的对称轴。OACBNMD或或:任意一条任意一条直径所在的直线直径所在的直线都是圆的对称轴都是圆的对称轴。任意
3、一条直径任意一条直径都是都是圆的对称轴(圆的对称轴()将图中的扇形将图中的扇形AOBAOB绕点绕点O O逆时针旋转逆时针旋转某个角度。在得到的图形中,同学们可某个角度。在得到的图形中,同学们可以通过比较前后两个图形,发现有何关以通过比较前后两个图形,发现有何关系?系?AB AB=、探究一:探究一:AB AB=AOBA OB=如果如果那么那么能够完全重合的弧叫等弧能够完全重合的弧叫等弧2.2.在同圆在同圆 中,如果弧相等,那么所中,如果弧相等,那么所对的圆心角对的圆心角_、所对的弦、所对的弦_,所对所对的弦的弦心距的弦的弦心距_。3.3.在同圆在同圆 中,如果弦相等,那么所中,如果弦相等,那么所
4、对的圆心角对的圆心角_、所对的弧、所对的弧_,_,所对的所对的弦的弦心距弦的弦心距_。相等相等(或等圆)(或等圆)相等相等相等相等相等相等1.1.在同圆在同圆 中,如果圆心角相等,那中,如果圆心角相等,那么它所对的弧相等、所对的弦相等么它所对的弧相等、所对的弦相等,所对的所对的弦的弦心距也相等。弦的弦心距也相等。结论:结论:相等相等以上三句话如没以上三句话如没有在同圆或等圆有在同圆或等圆中,这个结论还中,这个结论还会成立吗?会成立吗?(或等圆)(或等圆)(或等圆)(或等圆)相等相等(等对等定理等对等定理)一一.判断下列说法是否正确:判断下列说法是否正确:1相等的圆心角所对的弧相等。(相等的圆心
5、角所对的弧相等。()2相等的弧所对的弦相等。(相等的弧所对的弦相等。()3相等的弦所对的弧相等。(相等的弦所对的弧相等。()二二.如图,如图,OO中,中,AB=CDAB=CD,则,则501._2 ODCAB12试一试你的能力试一试你的能力50o 如图,在如图,在OO中,中,AC=BDAC=BD,,求求22的度数。的度数。你会做吗?你会做吗?图 23.1.5 145 解:解:AC=BDAC=BD(已知)(已知)AB=CDAB=CDAC-BC=BD-BCAC-BC=BD-BC(等式的性质)(等式的性质)1=2=451=2=45(在同圆中,相等的弧(在同圆中,相等的弧所对的圆心角相等)所对的圆心角相
6、等)1.如图如图,AB、CD、EF都是都是 O的直径的直径,且且123,弦弦AC、EB、DF是否相等?为什么?是否相等?为什么?练习练习:(第 1 题)2.如图,如图,AB是是 O的直径,的直径,AC、CD、DE、EF、FB都是都是 O的弦,且的弦,且ACCDDEEFFB,求,求AOC与与COF的度数的度数.(第 2 题)3.3.如图,已知如图,已知ADB BC,试说明试说明AB=CDAB=CDDCBAO练习练习:探究二:探究二:动手操作:动手操作:如何将圆如何将圆两等分两等分?四等分四等分?八等分八等分?你还可以将圆你还可以将圆多少等分呢?多少等分呢?如图,如果在圆形纸片上任意画一条直径如图
7、,如果在圆形纸片上任意画一条直径CDCD,过,过直径上一点直径上一点P P作弦作弦ABAB,弦,弦ABAB与直径与直径CDCD一定垂直吗?一定垂直吗?探究三:探究三:若将图若将图1 1沿着直径沿着直径CDCD对折,你能发现对折,你能发现什么结论?什么结论?在在OO中,如果中,如果CDABP直径弦,垂足为,A PB P、ADBDAC=BC、那么弦那么弦BPOACD结论结论:BPOACD在在OO中,如果中,如果CDCD是直径是直径,CDP,于于AD=BD,AC=BC那么:那么:AP=BP,垂直于弦的直径垂直于弦的直径,平分这条弦平分这条弦 并且平分弦所对的两条弧。并且平分弦所对的两条弧。(垂径定理
8、垂径定理)例例1 如图,已知在如图,已知在 O中,中,弦弦AB的长为的长为8厘米,圆心厘米,圆心O到到AB的距离(弦心距)为的距离(弦心距)为3厘米,求厘米,求 O的半径。的半径。分析:连结分析:连结OA。过。过O作作OEAB,垂足为,垂足为E,则则OE3厘米,厘米,AEBE。AB8厘米厘米 AE4厘米厘米 在在RtAOE中,根据勾股定理有中,根据勾股定理有OA5厘米厘米 O的半径为的半径为5厘米。厘米。.ABO讲解讲解例例2 已知:如图,在以已知:如图,在以O为圆心的两个同心圆中,为圆心的两个同心圆中,大圆的弦大圆的弦AB交小圆于交小圆于C,D两点。两点。试说明:试说明:ACBD。证明:过证
9、明:过O作作OEAB,垂足为,垂足为E,则,则 AEBE,CEDE。AECEBEDE。所以,所以,ACBDE.ACDBO讲解讲解 例例3 已知已知 O的直径是的直径是50 cm,O的的两条平行弦两条平行弦AB=40 cm,CD=48cm,求弦求弦AB与与CD之间的距离。之间的距离。.AEBOCD20152525247讲解讲解.AEBOCDFEF有两解:有两解:15+7=22cm 15-7=8cm 如图,矩形如图,矩形ABCDABCD与圆与圆O O交于点交于点A A、B B、E E、F F,DE=1cm DE=1cm,EF=3cmEF=3cm,则,则AB=_cmAB=_cmFEDCBAO51 1
10、、在同圆或等圆中、在同圆或等圆中,对应弧、弦、圆心对应弧、弦、圆心角,弦心距之间的关系。角,弦心距之间的关系。2 2、垂径定理、垂径定理 图23.1.7 O D C B A条件条件结论结论(1)过圆心)过圆心(2)垂直于弦)垂直于弦(3)平分弦)平分弦(4)平分弦所对的优弧)平分弦所对的优弧(5)平分弦所对的劣弧)平分弦所对的劣弧再见碑再见碑再见碑确定圆的条件三角形的外接圆已知两边解直角三角形已知一边一锐角解直角三角形构造直角三角形解题直角三角形的边角关系在实际生活中的应用已知两边解直角三角形已知一边一锐角解直角三角形构造直角三角形解题直角三角形的边角关系在实际生活中的应用小魔方站作品小魔方站
11、作品 盗版必究盗版必究语文语文附赠附赠 中高考状元学习方法中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同学尤其是着一些共性,而这些对在校的同学尤其是将参加高考的同
12、学都有一定的借鉴意义。将参加高考的同学都有一定的借鉴意义。青春风采北京市文科状元北京市文科状元 阳光女孩阳光女孩-何旋何旋 高考总分:高考总分:692分分(含含20分加分分加分)语文语文131分分 数学数学145分分英语英语141分分 文综文综255分分毕业学校:北京二中毕业学校:北京二中报考高校:报考高校:北京大学光华管理学北京大学光华管理学院院来自北京二中,高考成绩672分,还有20分加分。“何旋给人最深的印象就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀
13、是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。班主任:我觉得何旋今天取得这样的成绩,我觉得,很重要的是,何旋是土生土长的北京二中的学生,二中的教育理念是综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。高考总分高考总分:711分分毕业学校毕业学校:北京八中北京八中语文语文139分分 数学数学140分分英语英语141分分 理综理综291分分报考高校:报考高校:北京大学光华管理学院北京大学光华管理学院北京市理科状元杨蕙心北京市理科状元杨蕙心