1、2022年湖北省襄阳市中考数学真题学校:_姓名:_班级:_考号:_一、单选题1如果温度上升2 记作 ,那么温度下降3 记作()A B C D 2襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()ABCD32021年,襄阳市经济持续稳定恢复,综合实力显著增强,人均地区生产总值再上新台阶,突破100000元大关将100000用科学记数法表示为()ABCD4已知直线mn,将一块含30角的直角三角板ABC(ABC30,BAC60)按如图方式放置,点A,B分别落在直线m,n上
2、若170则2的度数为()A30B40C60D705襄阳市正在创建全国文明城市,某社区从今年6月1日起实施垃扱分类回收下列图形分别是可回收物、厨余垃圾、有害垃圾及其它垃圾的标志,其中,既是中心对称图形又是轴对称图形的是()ABCD6下列说法正确的是()A自然现象中,“太阳东方升起”是必然事件B成语“水中捞月”所描述的事件,是随机事件C“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D若抽奖活动的中奖概率为,则抽奖50次必中奖1次7如图,ABCD的对角线AC和BD相交于点O,下列说法正确的是()A若OBOD,则ABCD是菱形B若ACBD,则ABCD是菱形C若OAOD,则ABCD是菱形D若ACB
3、D,则ABCD是菱形8九章算术中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到里远的城市,所需时间比规定时间多天;若改为快马派送,则所需时间比规定时间少天,已知快马的速度是慢马的倍,求规定时间,设规定时间为天,则可列出正确的方程为()ABCD9点A(1,),B(2,)在反比例函数的图象上,则,的大小关系是( )AB=CD不能确定10二次函数yax2+bx+c的图象如图所示,则一次函数ybx+c和反比例函数y在同一平面直角坐标系中的图象可能是()ABCD二、填空题11化简分式:_12不等式组的解集是_13经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大
4、小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是_14在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm,与跳台底部所在水平面的竖直高度为ym,y与x的函数关系式为yx2+x+2(0x20.5),当她与跳台边缘的水平距离为_m时,竖直高度达到最大值15已知O的直径AB长为2,弦AC长为,那么弦AC所对的圆周角的度数等于_16如图,在ABC中,D是AC的中点,ABC的角平分线AE交BD于点F,若BF:FD3:1,AB+BE3,则ABC的周长为_三、解答题17先
5、化简,再求值:(a+2b)2+(a+2b)(a-2b)+2a(b-a),其中a-,b+18在“双减”背景下,某区教育部门想了解该区A,B两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:【收集数据】A学校50名九年级学生中,课后书面作业时长在70.5x80.5组的具体数据如下:74,72,72,73,74,75,75,75,75,75,75,76,76,76,77,77,78,80【整理数据】不完整的两所学校的频数分布表如下,不完整的A学校频数分布直方图如图所示:组别50.5x60.560.5x70
6、.570.5x80.580.5x90.590.5x100.5A学校515x84B学校71012174【分析数据】两组数据的平均数、众数、中位数、方差如下表:特征数平均数众数中位数方差A学校7475y127.36B学校748573144.12根据以上信息,回答下列问题:(1)本次调查是 调查(选填“抽样”或“全面”);(2)统计表中,x ,y ;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是 学校(选填“A”或“B”);(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共
7、有 人19位于岘山的革命烈士纪念塔是襄阳市的标志性建筑,是为纪念“襄樊战役”中牺牲的革命烈士及第一、第二次国内革命战争时期为襄阳的解放事业献身的革命烈士的而兴建的,某校数学兴趣小组利用无人机测量纪念塔的高度无人机在点A处测得纪念塔顶部点B的仰角为45,纪念塔底部点C的俯角为61,无人机与纪念塔的水平距离AD为10m,求纪念塔的高度(结果保留整数参考数据:sin610.87,cos610.48,tan611.80)20如图,在ABC中,ABAC,BD是ABC的角平分线(1)作ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:ADAE21探究函数性质时,我们经历了列表
8、、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程结合已有经验,请画出函数的图象,并探究该函数性质(1)绘制函数图象列表:下列是x与y的几组对应值,其中a x5432112345y3.82.51155a12.53.8描点:根据表中的数值描点(x,y),请补充描出点(2,a);连线:请用平滑的曲线顺次连接各点,画出函数图象;(2)探究函数性质,请写出函数y-|x|的一条性质: ;(3)运用函数图象及性质写出方程-|x|5的解 ;写出不等式-|x|1的解集 22如图,AB是半圆O的直径,点C在半圆O上,点D为的中点,连接AC,BC,AD,AD与BC相交于点G,过点D作直线DEBC,交A
9、C的延长线于点E(1)求证:DE是O的切线;(2)若,CG2,求阴影部分的面积23为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示已知甲、乙两种产品的售价分别为12元/kg和18元/kg(1)求出0x2000和x2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润销售额一成本),请求
10、出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值24矩形ABCD中,(k1),点E是边BC的中点,连接AE,过点E作AE的垂线EF,与矩形的外角平分线CF交于点F(1)【特例证明】如图(1),当k2时,求证:AEEF;小明不完整的证明过程如下,请你帮他补充完整证明:如图,在BA上截取BHBE,连接EHk2,ABBCB90,BHBE,1245,
11、AHE180-1135CF平分DCG,DCG90,3DCG45ECF3+4135(只需在答题卡对应区域写出剩余证明过程)(2)【类比探究】如图(2),当k2时,求的值(用含k的式子表示);(3)【拓展运用】如图(3),当k3时,P为边CD上一点,连接AP,PF,PAE45,求BC的长25在平面直角坐标系中,直线ymx-2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y-x2+2mx-m2+2与y轴交于点C(1)如图,当m2时,点P是抛物线CD段上的一个动点求A,B,C,D四点的坐标;当PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,求m的取值范围;求线段BC长度的最大值试卷第9页,共9页