章末第一章集合与函数概念.ppt

上传人(卖家):仙人指路 文档编号:5412306 上传时间:2023-04-10 格式:PPT 页数:69 大小:1.06MB
下载 相关 举报
章末第一章集合与函数概念.ppt_第1页
第1页 / 共69页
章末第一章集合与函数概念.ppt_第2页
第2页 / 共69页
章末第一章集合与函数概念.ppt_第3页
第3页 / 共69页
章末第一章集合与函数概念.ppt_第4页
第4页 / 共69页
章末第一章集合与函数概念.ppt_第5页
第5页 / 共69页
点击查看更多>>
资源描述

1、o章末归纳总结章末归纳总结o 一、集合的概念与表示,集合间的关系与运算o 1理解用描述法表示的集合中元素的属性是解决集合问题的重要基本功o 例1(1)集合Ay|yx,By|yx2,则AB_.o(2)集合A(x,y)|yx,B(x,y)|yx2,则AB_.o 解析(1)集合A是函数yx的值域,AR,集合B是函数yx2的值域,By|y0,ABy|y0故填y|y0o 2熟练地用数轴与Venn图来表达集合之间的关系与运算能起到事半功倍的效果o 例2集合Ax|x2,Bx|4xp0,若BA,则实数p的取值范围是_o 例3设全集Ua,b,c,d,e,若ABb,(UA)Bd,(UA)(UB)a,e,则下列结论

2、中正确的为()o AcA且cBBcA且c Bo Cc A且cB Dc A且c Bo 答案Bo 解析画出Venn图如图,依次据条件将元素填入,ABb,故b填在A与B公共部分,(UA)Bd,故d填在A圈外,B圈内,又(UA)(UB)a,e,a,e填在A、B两圈外,只剩下一元素c不能填在上述三个位置,故应填在A内B外,cA且c B,选B.o 3含字母的集合的相等、包含、运算关系问题常常要进行分类讨论讨论时要特别注意集合元素的互异性o 4空集是任何集合的子集,解题时要特别注意o 例5集合Ax|x2xa0,B2,1,若AB,则实数a的取值范围是_o 5新定义集合,关键是理解“定义”的含义,弄清集合中的元

3、素是什么o 例6A、B都是非空集合,定义A*Bx|xabab,aA,bB且b AB,若A1,2,B0,2,3,则A*B中元素的和为_o 解析由A*B的定义知,a可取1,2,b可取0,3,A*B中的元素xabab,o A*B1,7,2,11,其元素之和为21.o 6熟练掌握ABABAABB及集合的运算是解决一些集合问题的基础o 例7(1)如果全集Ux|x25x60,xN,A2,3,B1,3,5,则U(AB)_,AUB_.o(2)设Ax|xa0,Bx|ax10,且ABB,则实数a的值为()o A1 B1o C1或1 D1,1或0o 解析(1)Ux|(xb)(x1)0,xNx|1x0)个单位,可以得

4、到函数yf(xa)(yf(xa)的图象o 将yf(x)的图象上各点向上(下)平移a(a0)个单位,可以得到yf(x)a(或yf(x)a)的图象o(7)y|f(x)|的图象可由yf(x)的图象位于x轴及上方的部分不变,下方图象作关于x轴的对称翻折而得到o yf(|x|)的图象在y轴及其右侧部分与yf(x)图象相同,而yf(|x|)是偶函数,再在y轴左侧作右侧部分的对称图形即可o 例3已知函数f(x)x22ax2,x5,5o(1)当a1时,求函数f(x)的最大值和最小值;o(2)求实数a的取值范围,使yf(x)在区间5,5上是单调函数o 分析第(1)问,将a1代入,根据二次函数的图象得出结论;第(

5、2)问,根据二次函数的对称轴的位置确定单调性o 解析(1)当a1时,o f(x)x22x2(x1)21,x5,5,o f(x)的对称轴为x1.o x1时,f(x)取最小值1;o x5时,f(x)取最大值37.o(2)f(x)x22ax2(xa)22a2的对称轴为xa,f(x)在5,5上是单调函数o a5,或a5,即a5,或a5.o 三、注重数学思想与方法的提炼与掌握,养成自觉运用数学思想与方法分析解决数学问题的思维习惯o 1数形结合的思想o 例1设函数f(x)x22|x|1(3x3)o(1)证明f(x)是偶函数;o(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函

6、数;o(3)求函数的值域o 解析(1)f(x)(x)22|x|1o x22|x|1f(x),f(x)是偶函数o(2)当x0,时,f(x)x22x1(x1)22,o 当x0时,f(x)x22x1(x1)22,o 根据二次函数的作图方法,可得函数图象,如下图所示o 函数f(x)的单调区间为3,1),1,0),0,1),1,3o f(x)在区间3,1,0,1上为减函数,在1,0),1,3上为增函数o(3)当x0时,函数f(x)(x1)22的最小值为2,最大值为f(3)2.o 当x0时,函数f(x)(x1)22的最小值为2,最大值为f(3)2;o 故函数f(x)的值域为2,2o 例2已知关于x的方程x

7、24|x|5m有四个不相等的实数根,则实数m的取值范围是_o 解析设y1x24|x|5,y2m,由于y1x24|x|5为偶函数,画出x0的图象,再由对称性可画出x0时的图象,由图可见1m5时方程有4个根1m0的解集为()o A(,4)(4,)o B(4,0)(0,4)o C(,4)(0,4)o D(4,0)(4,)o 例4函数ya|x|与yxa的图象恰有两个公共点,则实数a的取值范围是()o A(1,)o B(1,1)o C(,11,)o D(,1)(1,)o 解析画出ya|x|与yxa的图象o 2函数与方程的思想o 函数与方程可以相互转化,注意运用函数与方程的思想解决问题o 要特别注意掌握一

8、元二次方程ax2bxc0(a0)的根的分布o 方程()有两不等实根0,方程()有两相等实根0,方程()无实根0 Bk4o C4k0 Dk0o 解析设f(x)2kx22x3k2,o 由题意知kf(1)0,o k0或k4,故选D.o 3分类讨论的思想o 在求解数学问题中,遇到下列情形常常要进行分类讨论o 涉及的数学概念是分类定义的;o 运用的数学定理、公式或运算性质、法则是分类给出的;o 求解的数学问题的结论有多种情况或多种可能性;o 由运算的限制条件引起的分类o 由实际问题的实际意义引起的分类o 数学问题中含有参变量,这些参变量的不同取值会导致不同的结果o 较复杂的或非常规的数学问题,需要采取分

9、类讨论的解题策略来解决的o 由图形的不确定性引起分类o 例8若f(x)(m1)x2(m1)x3(m1)0对一切实数x恒成立,则m的取值范围是()o A(1,)o B(,1)o 解析当m10时,显然成立o 当m10时,2,b2,比较ab与ab的大小o 解析令a2x,b2y,则x0,y0,o ab(ab)(2x)(2y)(4xy)xyxy0,abab.o 点评将a2,b2的条件量化,化不等关系为相等关系,转化为数的正负判断,促成了问题的解决o 例12定义在R上的奇函数f(x)为增函数,偶函数g(x)在0,)上的图象与f(x)的图象重合,设ab0,给出下列不等式,其中成立的是()o f(b)f(a)

10、g(a)g(b);o f(b)f(a)g(b)g(a);o f(a)f(b)0时,0f(x)1.o(1)证明:f(0)1且x1;o(2)证明:f(x)在R上单调递减o 分析解决这类问题应去掉抽象函数符号,利用等价转化思想,化为普通函数o 解析(1)在f(mn)f(m)f(n)中,o 取m0,n0,有f(m)f(m)f(0)o x0时,0f(x)1,f(m)0,f(0)1.o 又设mx0,则0f(x)1,o f(mn)f(0)f(x)f(x),o(2)设x10.o 0f(x2x1)0.o yf(x2)f(x1)f(x2x1)x1f(x1)o f(x2x1)f(x1)f(x1)o f(x1)f(x

11、2x1)10且a1)的性质,可类比指数函数f(x)ax,结合已知条件进行讨论o 5换元法o 总结评述:此题解法称为“换元法”,通过换元法把函数变为关于t的二次函数,然后求出二次函数在t0时的值域即得原函数的值域,用换元法解题,换元后一定要先确定新元的取值范围o 此题也可利用函数的单调性来解o 例16已知f(x1)x22x,求f(x)o 解析令tx1,则xt1,o f(t)(t1)22(t1)t24t3,o f(x)x24x3.o 6配凑法o 例18求f(x)2x24x1(1x1)的值域o 解析f(x)2(x1)21,此函数在1,1上单减,最大值f(1)7,最小值f(1)1,o 值域为1,7o

12、7待定系数法o 例19一次函数yf(x)满足:当x1时,y2,当x2时,y4,则f(5)_.o 解析设一次函数解析式为ykxb(k0),o 例20设二次函数f(x)二次项系数为1,满足f(1)f(2)0,则f(1)_.o 解析设f(x)x2pxq,o f(1)f(2)0,o 8关于对称与平移o 例21已知f(x)是偶函数,且其图象与x轴有n(nN)个交点,则方程f(x)0的所有实根之和为()o A4B2o C1D0o 解析由f(x)是偶函数可知,f(x)与x轴的n个交点的横坐标,即f(x)0的n个根x1,x2,x3xn中,若有一根在x轴右侧,则必有关于y轴对称的另一根在左侧,x1x2xn0.选

13、D.o 例22设函数yf(x)定义在实数集上,则函数yf(x1)与yf(1x)的图象关于()o A直线y0对称 B直线x0对称o C直线y1对称 D直线x1对称o 解析应用复合函数知识,令x1u,则yf(x1)f(u),yf(1x)f(u)o 显然f(u)与f(u)关于直线u0对称,即关于x10对称所以yf(x1)与yf(1x)关于直线x1对称选D.o 四、函数的实际应用o 例1某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个多订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元o(1)当一次订购

14、量为多少个时,零件的实际出厂单价恰降为51元?o(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数Pf(x)的表达式;o(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润实际出厂单价成本)o 解析(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则o(2)当0 x100时,P60;o 当100 x550时,o(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则o 当x500时,L6000;当x1000时,L11000o 因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(章末第一章集合与函数概念.ppt)为本站会员(仙人指路)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|