1、ABC什么叫全等三角形?什么叫全等三角形?两个能两个能完全重合完全重合的三角形叫做全等三角形。的三角形叫做全等三角形。ABCABC全等三角形的性质?全等三角形的性质?全等三角形:对应边相等,对应角相等。全等三角形:对应边相等,对应角相等。ABC ABCABCAB=AB,AC=AC,BC=BCA=A,B=B,C=C全等三角形共有全等三角形共有6组元素组元素(3组对应边、组对应边、3组对应角组对应角)三角形的三角形的6组元素组元素(3组对应边、3组对应角)中,中,要使两个三角形全等,到底需要使两个三角形全等,到底需要满足哪些条件?要满足哪些条件?6选选1 or 6选选2(一个角对应相等)(一个角对
2、应相等)(一条边对应相等)(一条边对应相等)/(两条边对应相等)(两条边对应相等)(两个角对应相等)(两个角对应相等)6选选1:一个角一个角对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;一条边一条边对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;6选选2:两个角两个角对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;两条边两条边对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;一角和一边一角和一边对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;(一个角、一条边对应相等)一个角、一条边对应相等)=可见:可见:要使两个三
3、角形全等,要使两个三角形全等,应至少有应至少有 组元素对应相等。组元素对应相等。36 6选选3 3边边边边边边(SSS)两边一角两边一角两角一边两角一边角角角角角角两边和它的夹角两边和它的夹角(SAS)两边和它一边的对角两边和它一边的对角两角和夹边两角和夹边(ASA)两角和一角的对边两角和一角的对边(AAS)两边和其中一边的对角两边和其中一边的对角对应相等的两个三角形不一定全等。=SSA 可见:可见:要使两个三角形全等,要使两个三角形全等,应至少有应至少有 组元素对应相等。组元素对应相等。36 6选选3 3边边边边边边(SSS)两边一角两边一角两角一边两角一边角角角角角角两边和它的夹角两边和它
4、的夹角(SAS)两边和它一边的对角两边和它一边的对角两角和夹边两角和夹边(ASA)两角和一角的对边两角和一角的对边(AAS)9三个角三个角对应相等的两个三角形不一定全等AAA 可见:可见:要使两个三角形全等,要使两个三角形全等,应至少有应至少有 组元素对应相等。组元素对应相等。36 6选选3 3边边边边边边(SSS)两边一角两边一角两角一边两角一边角角角角角角两边和它的夹角两边和它的夹角(SAS)两边和它一边的对角两边和它一边的对角两角和夹边两角和夹边(ASA)两角和一角的对边两角和一角的对边(AAS)11三角形全等的三角形全等的4个个种判定公理:种判定公理:SSS(边边边)(边边边)SAS(
5、边角边)(边角边)ASA(角边角)(角边角)AAS(角角边)(角角边)有三边对应相有三边对应相等的两个三角形等的两个三角形全等全等.有两边和它们的有两边和它们的夹角对应相等的夹角对应相等的两个三角形全等两个三角形全等.有两角和它们的夹有两角和它们的夹边对应相等的两个边对应相等的两个三角形全等三角形全等.有两角和及其中有两角和及其中一个角所对的边对一个角所对的边对应相等的两个三角应相等的两个三角形全等形全等.12 AN M EDCB1213一、挖掘一、挖掘“隐含条件隐含条件”判全等判全等1.1.如图(如图(1 1),),AB=CDAB=CD,AC=BDAC=BD,则,则ABCABCDCBDCB吗
6、吗?说说理由说说理由ADBC图(1)2.2.如图(如图(2 2),点),点D D在在ABAB上,点上,点E E在在ACAC上,上,CDCD与与BEBE相交于点相交于点O O,且,且AD=AE,AB=AC.AD=AE,AB=AC.若若B=20B=20,CD=5cm,CD=5cm,则,则C=C=,BE=BE=.说说理由说说理由.BCODEA图(2)3.3.如图(如图(3 3),),ACAC与与BDBD相交于相交于O,O,若若OB=ODOB=OD,A=CA=C,若,若AB=3cmAB=3cm,则,则CD=CD=.说说理由说说理由.ADBCO图(3)205cm3cm学习提示:学习提示:公共边,公共角,
7、公共边,公共角,对顶角这些都是隐含的边,角相等的条件!对顶角这些都是隐含的边,角相等的条件!144、如图,已知、如图,已知AD平分平分BAC,要使要使ABDACD,根据根据“SAS”需要添加条件需要添加条件 ;根据根据“ASA”需要添加条件需要添加条件 ;根据根据“AAS”需要添加条件需要添加条件 ;ABCDAB=ACAB=ACBDA=CDABDA=CDAB=CB=C友情提示:友情提示:添加条件的题目添加条件的题目.首先要首先要找到已具备的条件找到已具备的条件,这些条件有些是这些条件有些是题目已知条件题目已知条件 ,有些是图中隐含条件有些是图中隐含条件.二二.添条件判全等添条件判全等15 5
8、5、已知:、已知:B BDEFDEF,BCBCEFEF,现要,现要证明证明ABCABCDEFDEF,若要以若要以“SAS SAS”为依据,还缺条件为依据,还缺条件_;若要以若要以“ASA ASA”为依据,还缺条件为依据,还缺条件 _;若要以若要以“AAS AAS”为依据,还缺条件为依据,还缺条件_并说明理由。并说明理由。AB=DE AB=DE ACB=F ACB=F A=D A=DABCDEF16 三、熟练转化“间接条件”判全等6如图,如图,AE=CF,AFD=CEB,DF=BE,AFD与与 CEB全等吗?为什么?全等吗?为什么?ADBCFE8.“三月三,放风筝三月三,放风筝”如图(如图(6)
9、是小东同学自己)是小东同学自己做的风筝,他根据做的风筝,他根据AB=AD,BC=DC,不用度量,不用度量,就知道就知道ABC=ADC。请用所学的知识给予。请用所学的知识给予说明。说明。解答解答7.如图(如图(5)CAE=BAD,B=D,AC=AE,ABC与与ADE全等吗?全等吗?为什么?为什么?ACEBD解答解答解答解答17 6.6.如图如图AE=CFAE=CF,AFD=CEBAFD=CEB,DF=BEDF=BE,AFDAFD与与 CEBCEB全等吗?为什么?全等吗?为什么?解:解:AE=CF(已知已知)ADBCFEAEFE=CFEF(等量减等量,差相等等量减等量,差相等)即即AF=CE在在A
10、FD和和CEB中,中,AFD CEBAFD=CEB(已知已知)DF=BE(已知已知)AF=CE(已证已证)(SAS)187.如图如图 CAE=BAD,B=D,AC=AE,ABC与与ADE全等吗?为什么?全等吗?为什么?ACEBD解:解:CAE=BAD(已知已知)CAE+BAE=BAD+BAE (等量减等量,差相等等量减等量,差相等)即即BAC=DAE在在ABC和和ADE中,中,ABC ADEBAC=DAE(已证已证)AC=AE(已知已知)B=D(已知已知)(AAS)198.“三月三,放风筝三月三,放风筝”如图(如图(6)是小东同)是小东同学自己做的风筝,他根据学自己做的风筝,他根据AB=AD,
11、BC=DC,不用度量,就知道不用度量,就知道ABC=ADC。请用。请用所学的知识给予说明。所学的知识给予说明。解解:连接连接ACADC ABC(SSS)ABC=ADC(全等三角形的对应角相等全等三角形的对应角相等)在在ABC和和ADC中,中,BC=DC(已知已知)AC=AC(公共边公共边)AB=AD(已知已知)20实际运用实际运用 9.测量如图河的宽度,某人在河的对岸找到一参照物测量如图河的宽度,某人在河的对岸找到一参照物树木,视线树木,视线 与河岸垂直,然后该人沿河岸与河岸垂直,然后该人沿河岸步行步(每步约步行步(每步约0.75m)到)到O处,进行标记,处,进行标记,再向前步行再向前步行10
12、步到步到D处,最后背对河岸向前步行处,最后背对河岸向前步行20步,此时树木步,此时树木A,标记,标记O,恰好在同一视线上,则,恰好在同一视线上,则河的宽度为河的宽度为 米。米。15ABODC2188120204040FEDCBA10.10.如图如图,ABCABC与与DEFDEF是否全等是否全等?为什么为什么?2211.如图如图,M是是AB的中点的中点,1=2,MC=MD.试说明试说明ACM BDMABMCD()12证明证明:M是AB的中点(已知)MA=MB(中点定义)在ACM 和BDM中,MA=MB(已证)1=2(已知)MC=MD(已知)ACM BDM(SAS)23 12.如图如图,M,M、N
13、 N分别在分别在ABAB和和ACAC上上,CM,CM与与BNBN相交于点相交于点O,O,若若BM=CN,B=C BM=CN,B=C。请找出图中所有相等的线段请找出图中所有相等的线段,并说明理由。并说明理由。COBAMN24 1414.已知:已知:ABCABC和和BDEBDE是等边三角形是等边三角形,点点D D在在AEAE的延长线上。的延长线上。求证:求证:BD+DC=AD BD+DC=AD ABCDE分析:分析:AD=AE+EDAD=AE+ED 只需证:只需证:BD+DC=AE+EDBD+DC=AE+ED BD=ED BD=ED 只需证只需证DC=AEDC=AE即可。即可。25 15.15.如
14、图如图 已知已知AB=ACAB=AC,AD=AEAD=AE,试证明:试证明:ABD ABD ACEACEABCDE1226 16.16.如图,在四边形如图,在四边形ABCDABCD中,中,已知已知AB=ADAB=AD,CD=CBCD=CB,则图形,则图形中哪些角必定相等?请说明中哪些角必定相等?请说明理由。理由。BACD27 17.17.如图,如图,CA=CBCA=CB,AD=BDAD=BD,M M、N N分别是分别是CACA、CBCB的的 中点,则中点,则DM=DNDM=DN,说明理由。说明理由。ACDBMN281818.如图,如图,AB=DEAB=DE,AF=CDAF=CD,EF=BCEF
15、=BC,A AD D,试说明:试说明:BFCE BFCE ABCDEF291919.如图,如图,你能说明图,你能说明图中中的理由吗?的理由吗?302020.如图,如图,说出说出ABAB 的理由。的理由。3121.21.如图如图ABABCDCD,ADADBCBC,O O为为ACAC中点,过点的直线分中点,过点的直线分别交别交ADAD、BCBC于、,你能于、,你能说明说明吗?吗?NM猜想:猜想:OM与与ON相等吗?相等吗?322222.如图如图ABABACAC,点、在点、在BCBC上,且上,且BDBD CECE,那么图中又哪些三角形全等?那么图中又哪些三角形全等?说明理由。说明理由。23.已知已知
16、:如图如图AB=AE,B=E,BC=ED,点,点F是是CD的中点的中点 (1)求证:求证:AFCD (2)连接连接BE后,还能得出后,还能得出什么结论?(写出两个什么结论?(写出两个)34感悟与反思:感悟与反思:、平行、平行角相等;角相等;、对顶角、对顶角角相等;角相等;、公共角、公共角角相等;角相等;、角平分线、角平分线角相等;角相等;、垂直、垂直角相等;角相等;、中点、中点边相等;边相等;、公共边、公共边边相等;边相等;、旋转、旋转角相等,边相等。角相等,边相等。35一一.挖掘挖掘“隐含条件隐含条件”判全等判全等二二.添条件判全等添条件判全等三三.转化转化“间接条件间接条件”判全等判全等小结:小结:1、全等三角形的定义,性质,、全等三角形的定义,性质,判定方法。判定方法。2、证明题的方法、证明题的方法 要证什么要证什么 已有什么已有什么 还还 3、添加辅助线、添加辅助线