(专题精选)初中数学二次函数难题汇编附答案.doc

上传人(卖家):2023DOC 文档编号:5485760 上传时间:2023-04-21 格式:DOC 页数:19 大小:1.15MB
下载 相关 举报
(专题精选)初中数学二次函数难题汇编附答案.doc_第1页
第1页 / 共19页
(专题精选)初中数学二次函数难题汇编附答案.doc_第2页
第2页 / 共19页
(专题精选)初中数学二次函数难题汇编附答案.doc_第3页
第3页 / 共19页
(专题精选)初中数学二次函数难题汇编附答案.doc_第4页
第4页 / 共19页
(专题精选)初中数学二次函数难题汇编附答案.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、(专题精选)初中数学二次函数难题汇编附答案一、选择题1已知二次函数yax2+bx+c(a0)经过点M(1,2)和点N(1,2),则下列说法错误的是()Aa+c0B无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2C当函数在x时,y随x的增大而减小D当1mn0时,m+n【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可【详解】解:函数经过点M(1,2)和点N(1,2),ab+c2,a+b+c2,a+c0,b2,A正确;ca,b2,yax22xa,4+4a20,无论a为何值,函数图象与x轴必有两个交点,x1+x2,x1x21,|x1x2|22,

2、B正确;二次函数yax2+bx+c(a0)的对称轴x,当a0时,不能判定x时,y随x的增大而减小;C错误;1mn0,a0,m+n0,0,m+n;D正确,故选:C【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键2方程的根可视为函数的图象与函数的图象交点的横坐标,则方程的实根x0所在的范围是( )ABCD【答案】C【解析】【分析】首先根据题意推断方程x3+2x-1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x-1=0的实根x所在范围【详

3、解】解:依题意得方程的实根是函数与的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限当x=时,此时抛物线的图象在反比例函数下方;当x=时,此时抛物线的图象在反比例函数下方;当x=时,此时抛物线的图象在反比例函数上方;当x=1时,此时抛物线的图象在反比例函数上方方程的实根x0所在范围为:故选C【点睛】此题考查了学生从图象中读取信息的数形结合能力解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势3如图,二次函数的图象如图所示,则一次函数和反比例函数在同平面直角坐标系中的图象大致是( )ABCD【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a

4、,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案【详解】二次函数y=ax2+bx+c的图象开口向下,a0,二次函数y=ax2+bx+c的图象经过原点,c=0,二次函数y=ax2+bx+c的图象对称轴在y轴左侧,a,b同号,b0,一次函数y=ax+c,图象经过第二、四象限,反比例函数y=图象分布在第二、四象限,故选D【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键4二次函数为常数,且)中的与的部分对应值如表:下列结论错误的是()AB是关于的方程的一个根;C当时,的值随值的增大而减小;D当时,【答案】C【解析】【分析】根据函数中的x与y的部分对

5、应值表,可以求得a、b、c的值 然后在根据函数解析式及其图象即可对各个选项做出判断【详解】解:根据二次函数的x与y的部分对应值可知:当时,即,当时,即,当时,即,联立以上方程:,解得:,;A、,故本选项正确;B、方程可化为,将代入得:,是关于的方程的一个根,故本选项正确;C、化为顶点式得:,则抛物线的开口向下,当时,的值随值的增大而减小;当时,的值随值的增大而增大;故本选项错误;D、不等式可化为,令,由二次函数的图象可得:当时,故本选项正确;故选:C【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键5如图,正方形AB

6、CD中,AB4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CBBA、CDDA运动,到点A时停止运动设运动时间为t(s),AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()ABCD【答案】D【解析】试题分析:分类讨论:当0t4时,利用S=S正方形ABCDSADFSABESCEF可得S=t2+4t,配成顶点式得S=(t4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4t8时,直接根据三角形面积公式得到S=(8t)2=(t8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断解:当0t4时,S=S正方形ABCDSADF

7、SABESCEF=444(4t)4(4t)tt=t2+4t=(t4)2+8;当4t8时,S=(8t)2=(t8)2故选D考点:动点问题的函数图象6若二次函数yx22x+2在自变量x满足mxm+1时的最小值为6,则m的值为()ABC1D【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m1或m+11两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值【详解】yx22x+2(x1)2+1,抛物线开口向上,对称轴为x1,当m1时,可知当自变量x满足mxm+1时,y随x的增大而增大,当xm时,y有最小值,m22m+26,解得m1+或m1(舍去),当m+11时,

8、可知当自变量x满足mxm+1时,y随x的增大而减小,当xm+1时,y有最小值,(m+1)22(m+1)+26,解得m(舍去)或m,综上可知m的值为1+或故选B【点睛】本题主要考查二次函数的性质,用m表示出其最小值是解题的关键7小明从如图所示的二次函数的图象中,观察得出了下面五条信息:c0,abc0,a-b+c0,4ac,2a=2b,其中正确结论是()ABCD【答案】C【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】由抛物线交y轴于负半轴,则c0;对称轴在y轴右侧,对称轴为x=0,又a0

9、,b0;由抛物线与y轴的交点在y轴的负半轴上,c0,故错误;结合图象得出x=1时,对应y的值在x轴上方,故y0,即ab+c0,故正确;由抛物线与x轴有两个交点可以推出b24ac0,故正确;由图象可知:对称轴为x=则2a=2b,故正确;故正确的有:故选:C【点睛】本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x轴交点个数即可得出二次函数系数满足条件8如图,坐标平面上,二次函数yx2+4xk的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k0若ABC与ABD的面积比为1:4,则k值为何?( )A1BCD【答案】D【解析】【分析】求出顶点和C的坐标,由三角形

10、的面积关系得出关于k的方程,解方程即可【详解】解:yx2+4xk(x2)2+4k,顶点D(2,4k),C(0,k),OCk,ABC的面积ABOCABk,ABD的面积AB(4k),ABC与ABD的面积比为1:4,k(4k),解得:k故选:D【点睛】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键9如图,二次函数的图象与轴正半轴相交于、两点,与轴相交于点,对称轴为直线,且,则下列结论:;关于的方程有一个根为,其中正确的结论个数有( )A个B个C个D个【答案】C【解析】【分析】由二次图像开口方向、对称轴与y轴的交点可判断出a、b、c的符号,从而可判断;由图像

11、可知当x3时,y0,可判断;由OAOC,且OA1,可判断;把代入方程整理得ac2bcc0,结合可判断;从而得出答案.【详解】由图像开口向下,可知a0,与y轴的交点在x轴的下方,可知c0,又对称轴方程为x2,0,b0,abc0,故正确;由图像可知当x3时,y0,9a3bc0,故错误;由图像可知OA1,OAOC,OC1,即c1,故正确;假设方程的一个根为x,把代入方程,整理得ac2bcc0, 即方程有一个根为xc,由知cOA,而当xOA是方程的根,xc是方程的根,即假设成立,故正确.故选C.【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此

12、题的关键.10某二次函数图象的顶点为,与轴交于、两点,且若此函数图象通过、四点,则、之值何者为正?( )ABCD【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x轴的交点坐标,从而可以判断a、b、c、d的正负,本题得以解决【详解】二次函数图象的顶点坐标为(2,-1),此函数图象与x轴相交于P、Q两点,且PQ=6,该函数图象开口向上,对称轴为直线x=2,图形与x轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),此函数图象通过(1,a)、(3,b)、(-1,c)、(-3,d)四点,a0,b0,c=0,d0,故选:D【点睛】此题考查抛物线与x轴的交点、二次函

13、数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答11如图,矩形的周长是,且比长若点从点出发,以的速度沿方向匀速运动,同时点从点出发,以的速度沿方向匀速运动,当一个点到达点时,另一个点也随之停止运动若设运动时间为,的面积为,则与之间的函数图象大致是( )ABCD【答案】A【解析】【分析】先根据条件求出AB、AD的长,当0t4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,分析图像可排除选项B、C;当4t6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,分析图像即可排除选项D,从而得结论【详解】解:由题意得,可解得,即,当0t4时,Q在边A

14、B上,P在边AD上,如图1,SAPQ=,图像是开口向上的抛物线,故选项B、C不正确;当4t6时,Q在边BC上,P在边AD上,如图2,SAPQ=, 图像是一条线段,故选项D不正确;故选:A【点睛】本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式12如图,为等边三角形,点从A出发,沿作匀速运动,则线段的长度y与运动时间x之间的函数关系大致是( )ABCD【答案】B【解析】【分析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有

15、最小值,故选项B符合题意,选项A不合题意【详解】根据题意得,点从点运动到点时以及从点运动到点时是一条线段,故选项C与选项D不合题意; 点从点运动到点时,是的二次函数,并且有最小值, 选项B符合题意,选项A不合题意 故选B【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题13二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c3b;(3)7a3b+2c0;(4)若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象

16、上,则y1y3y2;(5)若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x2其中正确的结论有()A2个B3个C4个D5个【答案】B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-=2,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y0,可得9a+3b+c0,可得9a+c-3c,故(2)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a3b+2c=7a+12a-5a=14a,由函数的图像开口向下,可知a0,因此7a3b+2c0,故(3)不正确;根据图像可

17、知当x2时,y随x增大而增大,当x2时,y随x增大而减小,可知若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1=y3y2,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x11x2,故(5)正确正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左

18、;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点14如图,已知将抛物线沿轴向上翻折与所得抛物线围成一个封闭区域(包括边界),在这个区域内有5个整点(点满足横、纵坐标都为整数,则把点叫做“整点”).现将抛物线沿轴向下翻折,所得抛物线与原抛物线所围成的封闭区域内(包括边界)恰有11个整点,则的取值范围是( )ABCD【答案】D【解析】【分析】画出图象,利用图象可得m的取值范围【详解】解: 该抛物

19、线开口向下,顶点(-1,2),对称轴是直线x=-1.点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)符合题意,此时x轴.上的点(-2, 0)、(0, 0)也符合题意,将(0,1)代入得到1=a+2.解得a=-1.将(1, 0)代入得到0= 4a+2.解得a= 有11个整点,点(0,-1)、点(-2, -1)、点(-2,1)、点(0,1)也必须符合题意.综上可知:当 时,点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)、点(-2, 0)、(0,0)、点(0,-1)、点(-2,-1)、点(-2,1)、点(0, 1),共有11个

20、整点符合题意,故选: D.【点睛】本题考查了二次函数图象与系数的关系,抛物线与x轴的交点的求法,利用图象解决问题是本题的关键.15二次函数(是常数,)的自变量与函数值的部分对应值如下表:012且当时,与其对应的函数值有下列结论:;和3是关于的方程的两个根;其中,正确结论的个数是( )A0B1C2D3【答案】C【解析】【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解【详解】由表格可知当x=0和x=1时的函数值相等都为-2抛物线的对称轴是:x=-=;a、b异号,且b=-a;当x=0时y=c=-2cabc0,故正确;根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t

21、和3是关于的方程的两个根;故正确;b=-a,c=-2二次函数解析式:当时,与其对应的函数值,a;当x=-1和x=2时的函数值分别为m和n,m=n=2a-2,m+n=4a-4;故错误故选:C【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键16若用“*”表示一种运算规则,我们规定:a*baba+b,如:3*2323+25以下说法中错误的是()A不等式(2)*(3x)2的解集是x3B函数y(x+2)*x的图象与x轴有两个交点C在实数范

22、围内,无论a取何值,代数式a*(a+1)的值总为正数D方程(x2)*35的解是x5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)a(a+1)a+(a+1)a2+a+1(a+)2+0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】a*baba+b,(2)*(3x)(2)(3x)(2)+(3x)x1,(2)*(3x)2,x12,解得x3,故选项A正确;y(x+2)*x(x+2)x(x+2)+xx2+2x2,当y0时,x2

23、+2x20,解得,x11+,x21,故选项B正确;a*(a+1)a(a+1)a+(a+1)a2+a+1(a+)2+0,在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;(x2)*35,(x2)3(x2)+35,解得,x3,故选项D错误;故选D【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.17抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x21012y04664从上表可知,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在对称

24、轴左侧部分是上升的【答案】C【解析】【分析】【详解】解:当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C18二次函数yax2+bx+c(a0)中的x与y的部分对应值如下表:x32101234y125034305给出以下结论:(1)二次函数yax2+bx+c有最小值,最小值为3;(2)当x2时,y0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象

25、上,则当1x10,3x24时,y1y2上述结论中正确的结论个数为()A0B1C2D3【答案】B【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x1,最小值为4,故错误,不符合题意;(2)从表格可以看出,当x2时,y0,符合题意;(3)1x10,3x24时,x2离对称轴远,故错误,不符合题意;故选择:B【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键19如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90得到点F,连

26、接CF,则CEF面积的最小值是( )A16B15C12D11【答案】B【解析】【分析】过点F作AD的垂线交AD的延长线于点H,则FEHEBA,设AE=x,可得出CEF面积与x的函数关系式,再根据二次函数图象的性质求得最小值【详解】解:过点F作AD的垂线交AD的延长线于点H, A=H=90,FEB=90, FEH=90-BEA=EBA, FEHEBA, 为的中点, 设AE=x, AB HF 当 时,CEF面积的最小值 故选:B【点睛】本题通过构造K形图,考查了相似三角形的判定与性质建立CEF面积与AE长度的函数关系式是解题的关键20如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:;.其中,

27、正确结论的个数是( )ABCD【答案】C【解析】【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论【详解】解:根据图象可知a0,c0,b0,, 故错误;.B(-c,0)抛物线y=ax2+bx+c与x轴交于A(-2,0)和B(-c,0)两点, , ac2-bc+c=0 ,ac-b+1=0,故正确;,b=ac+1,2b-c=2,故正确;故选:C【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文((专题精选)初中数学二次函数难题汇编附答案.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|