1、相似三角形的常见题型【知识要点】1. 如何选择相似三角行判定定理:已知一个角对应相等的,常用 (两角型或夹角与一组对应边成比例)已知一组对边成比例的,常用 (夹角与一组对应边成比例)只知道边的关系的, 常用 (三边对应成比例) 【学堂练习】1.如图,ABCD中,直线PS分别交AB、CD的延长线于P、S交BC、AC、AD于Q、E、R,图中相似三角形的对数(不含全等三角形)共有 对。2.如图,ABCD中,AE交BC延长线于E交CD于F,BC CE3 2,则CF FD= 。ARSDCQEPB题1题2ABCDEFD【经典例题】例1、如图,在ABC中,DEBC,EFCD. (1)求证:AF:AD=AD:
2、AB (2)若AF=4,FB=5,求FD的长.例2、如图,12,AE12,AD15,AC20,AB25。证明:ADEABC。例3、如图所示,E是 ABCD边AB延长线上一点,DE交BC于F,交AC于G,求证:(1)DG2=GEGF。(2)。ABFCGDE例4、 如图,ABC中,D是BC边上的中点,且ADAC,DEBC,DE与AB相交于点E,EC与AD相交于点F。(1)求证:ABCFCD;(2)若,求DE的长。例5如图, ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1) AEF与ABE相似吗?说说你的理由.(2)BD2=ADDF吗?请说明理由. 例6如图
3、,ADAB,BEAB,AE、BD相交于点C,CFAB,垂足为F。DAFBEC (1)求证:。【随堂练习】1如图所示,DEBC,则= 。2如图所示,DEBC,EFAB,AD=1.8cm,EF=1.2cm,CF=1cm,则BF= 。3如图所示,DEBC,DFAC,则下列比例式正确的是( )。 A B C D4. 如图,在正三角形ABC中,D、E分别在AC、AB上,且,AEBE,则有( ) A. AEDBED B. AEDCBD C. AEDABDD. BADBCD第4题图ABCEDF第3题图ABCEDF第2题图ABCDE第1题图5、如图,在中,在边上取一点,使,过作交于,求的长ADBCE6、如图,
4、在RtABC中,ACB=90,边AC的垂直平分线EF交AC于点E,交AB于点F,BGAB,交EF于点G求证:CF是EF与FG的比例中项ACBGEF相似三角形的应用【知识要点】1.如何构造相似三角形: (1)利用阳光下的影子: (同一刻时) (2)利用标杆: (3)利用镜子反射: 【学堂练习】1. 小颖测得2m高的标杆在太阳下的影长为1.2m,同时又测得一棵树的影长为3.6m,请你帮助小颖计算出这棵树的高度. 2.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF3m, 沿BD方向到达点F处再测得自己得影长FG4m,如果小明得身高为1.6m,求路灯杆AB的高度。
5、DFBCEG 3. 阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.【经典例题】例1、张同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,问学校旗杆的高度9.6米2米例2、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。例3、我侦察员在距敌方200米的地方发现敌人的一
6、座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。【随堂练习】1、如图,一电线杆AB的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米。小明用这些数据很快算出了电线杆AB的高。请你计算,电线杆AB的高为( )(A) 5米 (B)6米 (C)7米 (D)8米2、如图,这是圆桌正上方的灯泡(看作一个
7、点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图已知桌面的直径为1.2米,桌面距离地面1米若灯泡距离地面3米,则地面上阴影部分的面积为() A0.36平方米 B 0.81平方米 C2平方米 D 3.24平方米3、厨房角柜的台面是三角形(如图所示),如果把各边中点连线所围成的三角形围成黑色大理石(图中阴影部分),其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是( ) A B C D 1题图2题图3题图 4、小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=2
8、1米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度DC=1.6米,请你帮助小强计算出教学楼的高度。(根据光的反射定律:反射角等于入射角) 5、如图,甲楼AB高18米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1: ,已知两楼相距20米,那么甲楼的影子落在乙楼上有多高? 【课后强化】 1、某学习小组选一名身高为1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测量该同学的影长为1.2m,另一部分同学测量同一时刻旗杆影长为9m,那么旗杆的高度是_m。ABDCE2、如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE
9、延长线上的C、D两点,使得CDAB,若测得CD5m,AD15m,ED=3m,则A、B两点间的距离为_。3、如图,AB是斜靠在墙上的长梯,梯脚B距墙脚1.6m,梯上点D距墙1.4m,BD长0.55m,求该梯子的长。4、如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的像,像的长度为2cm,OA=60cm,OB=15cm,求火焰的长度AC。ACBDO第一节 :相似形与相似三角形基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。1几个重要概念与性质(平行线分线段成比例定理)(1)平行线分线段成
10、比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知abc, A D a B E b C F c 可得 等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DEBC可得:.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)平行于三角形一边的直线和其他
11、两边相交,所构成的三角形与原三角形相似。 比例线段:四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。2比例的有关性质比例的基本性质:如果,那么ad=bc。如果ad=bc(a,b,c,d都不等于0),那么。合比性质:如果,那么。等比性质:如果=(b+d+n0),那么b是线段a、d的比例中项,则b2ad.典例剖析例1: 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为_Km. 若 = 则=_. 若 = 则a:b=_.3 相似三角形的判定(1) 如果两个三角形的两角分别于另一个三角形的两角对应相
12、等,那么这两个三角形相似。(2) 两边对应成比例并且它们的夹角也相等的两个三角形相似。(3) 三边对应成比例的两个三角形相似。补充:相似三角形的识别方法(1)定义法:三角对应相等,三边对应成比例的两个三角形相似。(2)平行线法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。注意:适用此方法的基本图形,(简记为A型,X型)(3)三边对应成比例的两个三角形相似。(4)两边对应成比例并且它们的夹角也相等的两个三角形相似。(5)两角对应相等的两个三角形相似。(6)一条直角边和斜边长对应成比例的两个直角三角形相似。(7)被斜边上的高分成的两个直角三角形与原直角三角
13、形相似。【基础练习】(1)如图1,当 时,ABC ADE(2)如图2,当 时, ABC AED。(3)如图3,当 时, ABC ACD。小结:以上三类归为基本图形:母子型或A型(3)如图4,如图1,当ABED时,则 。 (4)如图5,当 时,则 。小结:此类图开为基本图开:兄弟型或X型典例剖析例1:判断所有的等腰三角形都相似 ( )所有的直角三角形都相似 ( )所有的等边三角形都相似 ( )所有的等腰直角三角形都相似 ( )例2:如图,ABC中,AD是BAC的平分线,AD的垂直平分线交AD于E,交BC的延长线于F求证: ABF CAF.例3:如图:在Rt ABC中, ABC=90,BDAC于D
14、,若 AB=6 ;AD=2; 则AC= ;BD= ;BC= ;例3:如图:在Rt ABC中, ABC=90,BDAC于D ,若E是BC中点,ED的延长线交BA的延长线于F,求证:AB : AC=DF : BF 第二节:相似三角形的判定 (一)相似三角形:定义1、对应角相等,对应边成比例的两个三角形,叫做相似三角形温馨提示:当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;相似三角形的特征:形状一样,但大小不一定相等;对应中线之比、对应高之比、对应角平线之比等于相似比。两个钝角三角形是否
15、相似,首先要满足两个钝角相等的条件。2、相似三角形对应边的比叫做相似比温馨提示:全等三角形一定是相似三角形,其相似比k=1所以全等三角形是相似三角形的特例其区别在于全等要求对应边相等,而相似要求对应边成比例相似比具有顺序性例如ABCABC的对应边的比,即相似比为k,则ABCABC的相似比,当且仅当它们全等时,才有k=k=1相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原
16、三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似温馨提示:定理的基本图形有三种情况,如图其符号语言:DEBC,ABCADE;这个定理是用相似三角形定义推导出来的三角形相似的判定定理它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”;有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”(二)相似三角形的判定1、相似三角形的判定:判定定理(1):两角对应相等,两三角形相似判定定理(2):两边对应成比例且夹角相等,两三角形相似判定定理(3):三边对应成比例,两三角形相似温馨提示:有平行线时,用上节学习
17、的预备定理;已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;已有两边对应成比例时,可考虑利用判定定理2或判定定理3但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等例1.如图三角形ABC中,点E为BC的中点,过点E作一条直线交AB于D点,与AC的延长线将于F点,且FD=3ED,求证:AF=3CF2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似温馨提示:由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两
18、个直角三角形相似;如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛如图,可简单记为:在RtABC中,CDAB,则ABCCBDACD直角三角形的身射影定理:AC2=AD*AB CD2=AD*BD BC2=BD*AB总结:寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形
19、中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法如:(1)“平行线型”相似三角形,基本图形见上节图“见平行,想相似”是解这类题的基本思路;(2)“相交线型”相似三角形,如上图其中各图中都有一个公共角或对顶角“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“旋转型”相似三角形,如图若图中1=2,B=
20、D(或C=E),则ADEABC,该图可看成把第一个图中的ADE绕点A旋转某一角度而形成的第三节 相似三角形中的辅助线一、作平行线例1. 如图,的AB边和AC边上各取一点D和E,且使ADAE,DE延长线与BC延长线相交于F,求证: 例2. 如图,ABC中,ABAC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:ABDF=ACEF。 二、作垂线例3. 如图从 ABCD顶点C向AB和AD的延长线引垂线CE和CF,垂足分别为E、F,求证:。 三、作延长线例4. 如图,在梯形ABCD中,ADBC,若BCD的平分线CHAB于点H,BH=3AH,且四边形AHCD的面积为21,求HBC
21、的面积。 例5. 如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FGAB于G,求证:FG=CFBF 四、作中线例6 如图,中,ABAC,AEBC于E,D在AC边上,若BD=DC=EC=1,求AC。 五、过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明1、 等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一
22、条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。例1:如图3,ABC中,AD平分BAC, AD的垂直平分线FE交BC的延长线于E求证:DE2BECE 2、 等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。例2:如图4,在ABC中,BAC=90,ADBC,E是AC的中点,ED
23、交AB的延长线于点F求证:3、等积过渡法(等积代换法)思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。例3:如图5,在ABC中,ACB=90,CD是斜边AB上的高,G是DC延长线上一点,过B作BEAG,垂足为E,交CD于点F求证:CD2DFDG六、证比例式和等积式的方法:对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等若比例式或等积式所涉及的线段在同一直线上时,应将线段比
24、“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明图5AEFBDGCH例1如图5在ABC中,AD、BE分别是BC、AC边上的高,DFAB于F,交AC的延长线于H,交BE于G,求证:(1)FG / FAFB / FH (2)FD是FG与FH的比例中项BEACDMN例2如图在ABC中,AD是BC边上的中线,M是AD的中点,CM的延长线交AB于N求:AN:AB的值; 图CEDAFMB例3如图过ABC的顶点C任作一直线与边AB及中线AD分别交于点F和E过点D作DMFC交AB于点M(1)若SAEF:S四边形MDEF2:3,求AE:ED; (2)求证:AEFB2AFED 第四节 相似三角形难题
25、集一、分类讨论:PADBQC图例1如图在正方形ABCD的边长为1,P是CD边的中点,Q在线段BC上,当BQ为何值时,ADP与QCP相似?图12ADBCP1P2P3例2如图在梯形ABCD中,ADBC,A900,AB7,AD2,BC3试在边AB上确定点P的位置,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似 二:相似三角形中的动点问题:1.如图,在RtABC中,ACB=90,AC=3,BC=4,过点B作射线BB1AC动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动过点D作DHAB于H,过点E作EFAC交射线BB1于F,G
26、是EF中点,连接DG设点D运动的时间为t秒(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当DEG与ACB相似时,求t的值2.如图,在ABC中,ABC90,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动当其中有一点到达终点时,它们都停止移动设移动的时间为t秒(1)当t=2.5s时,求CPQ的面积;求CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当CPQ为等腰三角形时,求出t的值3.如图1,在RtABC中,ACB90,AC6,BC8,点D在边AB上运动,DE平分CD
27、B交边BC于点E,EMBD,垂足为M,ENCD,垂足为N(1)当ADCD时,求证:DEAC;(2)探究:AD为何值时,BME与CNE相似?4.如图所示,在ABC中,BABC20cm,AC30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动设运动的时间为x(1)当x为何值时,PQBC?(2)APQ与CQB能否相似?若能,求出AP的长;若不能说明理由5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的
28、速度移动如果P、Q同时出发,用t(s)表示移动的时间(0t6)。(1)当t为何值时,QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与ABC相似?三、构造相似辅助线双垂直模型 6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45,求这个正比例函数的表达式7.在ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作ABD,使ABD为等腰直角三角形,求线段CD的长8.在ABC中,AC=BC,ACB=90,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点求证:MC:NC=AP:PB
29、9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E那么D点的坐标为()A. B.C. D.10.已知,如图,直线y=2x2与坐标轴交于A、B两点以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为12。求C、D两点的坐标。四、构造相似辅助线A、X字型 11.如图:ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。求证:12.四边形ABCD中,AC为AB、AD的比例中项,且AC平分DAB。求证:13.在梯形ABCD中,ABCD,ABb,CDa,E为AD边上的任意一
30、点,EFAB,且EF交BC于点F,某同学在研究这一问题时,发现如下事实:(1)当时,EF=;(2)当时,EF=;(3)当时,EF=当时,参照上述研究结论,请你猜想用a、b和k表示EF的一般结论,并给出证明14.已知:如图,在ABC中,M是AC的中点,E、F是BC上的两点,且BEEFFC。求BN:NQ:QM15.证明:(1)重心定理:三角形顶点到重心的距离等于该顶点对边上中线长的(注:重心是三角形三条中线的交点)(2)角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例五、 相似类定值问题 16.如图,在等边ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点
31、,BD、CD的延长线分别交AC、AB于点E、F求证:17.已知:如图,梯形ABCD中,AB/DC,对角线AC、BD交于O,过O作EF/AB分别交AD、BC于E、F。求证:18.如图,在ABC中,已知CD为边AB上的高,正方形EFGH的四个顶点分别在ABC上。求证:19.已知,在ABC中作内接菱形CDEF,设菱形的边长为a求证:六:相似之共线线段的比例问题 20.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点求证:(2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(
32、要求仅以图2为例进行证明或说明);21.已知:如图,ABC中,ABAC,AD是中线,P是AD上一点,过C作CFAB,延长BP交AC于E,交CF于F求证:BP2PEPF 22.如图,已知ΔABC中,AD,BF分别为BC,AC边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H。求证: DE2=EGEH 23.已知如图,P为平行四边形ABCD的对角线AC上一点,过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H.求证:七、相似之等积式类型综合24.已知如图,CD是RtABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F。求证:25如图,在
33、RtABC中,CD是斜边AB上的高,点M在CD上,DHBM且与AC的延长线交于点E.求证:(1)AEDCBM;(2)26. 如图,ABC是直角三角形,ACB=90,CDAB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:.(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.27.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N求证:28.如图,BD、CE分别是ABC的两边上的高,过D作DGBC于G,分别交CE及BA的延长线于F、H。求证:(1)DG2BGCG;(2)BGCGGFGH 八、相似基本模型应用 29.ABC和DEF是两个等腰直角三角形,A=D=90,DEF的顶点E位于边BC的中点上(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:BEMCNE;(2)如图2,将DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论30.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR31.如图,在ABC中,ADBC于D,DEAB于E,DFAC于F。求证: