1、桐梓县官仓中学教案课题勾股定理(1)教师:唐大章时间:2013.4教学目标1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。3介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习教材分析重点勾股定理的内容及证明。难点勾股定理的证明教学方法自主探索 讲授法教具三角板课时1教学补充教学过程简记学习过程:一.预习新知(阅读教材第64至66页,并完成预习内容。)1正方形A、B 、C的面积有什么数量关系?2以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?归纳:等腰直角三角形三边之
2、间的特殊关系(1)那么一般的直角三角形是否也有这样的特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?(4)对于更一般的情形将如何验证呢?二.课堂展方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。S正方形_方法二;已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=_右边S=_左边和右边面积相等,即化简可得。归纳:勾股定理的具体
3、内容是 。三.随堂练习1.如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;(2)若B=30,则B的对边和斜边: ;(3)三边之间的关系: 2.完成书上P69习题1、2四.课堂检测新课 标 第 一 网1.在RtABC中,C=90若a=5,b=12,则c=_;若a=15,c=25,则b=_;若c=61,b=60,则a=_;若ab=34,c=10则SRtABC =_。2.已知在RtABC中,B=90,a、b、c是ABC的三边,则c= 。(已知a、b,求c)a= 。(已知b、c,求a)b= 。(已知a、c,求b)3.直角三角形两直角边长分别为5和12,则它斜边上的高为_
4、。4.已知一个Rt的两边长分别为3和4,则第三边长的平方是() A、25B、14C、7D、7或255.等腰三角形底边上的高为8,周长为32,则三角形的面积为() A、56B、48C、40D、32五.小结与反思板书设计勾股定理的具体内容是.如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;(2)若B=30,则B的对边和斜边: ;(3)三边之间的关系: 桐梓县官仓中学教案课题18.1 勾股定理(2)教师:唐大章时间:2013.4教学目标1会用勾股定理解决简单的实际问题。2树立数形结合的思想。3经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。4培养思维意
5、识,发展数学理念,体会勾股定理的应用价值。教材分析重点勾股定理的应用难点实际问题向数学问题的转化教学方法自主探索教具三角板课时1教学补充教学过程简记一.预习新知(阅读教材第66至67页,并完成预习内容。)1.在解决问题时,每个直角三角形需知道几个条件?直角三角形中哪条边最长?2.在长方形ABCD中,宽AB为1m,长BC为2m ,求AC长问题(1)在长方形ABCD中AB、BC、AC大小关系?(2)一个门框的尺寸如图1所示若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?若薄木板长3米,宽1.5米呢?若薄木板长3米,宽2.2米呢?为什么?BC1m 2mAOBDCACAOBOD图1二.课堂展示例
6、:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米求梯子的底端B距墙角O多少米?如果梯的顶端A沿墙下滑0.5米至C. 算一算,底端滑动的距离近似值(结果保留两位小数)三.随堂练习1.书上P68练习1、22小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。3如图,山坡上两株树木之间的坡面距离是米,则这两株树之间的垂直距离是 米,水平距离是 米。3题图 1题图 2题图四.课堂检测1如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。2如图,原计划从A地经C地到B地修建一条高速公路,后
7、因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?3如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,B=60,则江面的宽度为 。4有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。5一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RPPQ,则RQ= 厘米。图3 6.如图3,分别以Rt ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出S
8、1、S2、S3之间有的关系式 S1S2S3图4 变式:书上P71 -11题如图4 五.小结与反思板书设计.课堂展示.课堂检测桐梓县官仓中学教案课题18.1 勾股定理(3)教师:唐大章时间:2013.4教学目标1、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。2、体会数与形的密切联系,增强应用意识,提高运用勾股定理解决问题的能力。3、培养数形结合的数学思想,并积极参与交流,并积极发表意见。教材分析重点利用勾股定理在数轴上表示无理数难点确定以无理数为斜边的直角三角形的两条直角边长教学方法自主探索 讲授法教具三角板课时1教学补充教学过程简记一.预习新知(阅读教材第67
9、至68页,并完成预习内容。)1.探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?2.分析:如果能画出长为_的线段,就能在数轴上画出表示的点。容易知道,长为的线段是两条直角边都为_的直角边的斜边。长为的线段能是直角边为正整数的直角三角形的斜边吗?利用勾股定理,可以发现,长为的线段是直角边为正整数_、 _的直角三角形的斜边。3.作法:在数轴上找到点A,使OA=_,作直线垂直于OA,在上取点B,使AB=_,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示的点。4.在数轴上画出表示的点?(尺规作图)二.课堂展示例1已知直角三角形的两边长分别为5和12,求第
10、三边。例2已知:如图,等边ABC的边长是6cm。求等边ABC的高。 求SABC。三.随堂练习1.完成书上P71第9题2填空题在RtABC,C=90,a=8,b=15,则c= 。在RtABC,B=90,a=3,b=4,则c= 。在RtABC,C=90,c=10,a:b=3:4,则a= ,b= 。(4)已知直角三角形的两边长分别为3cm和5cm,则第三边长为 。2已知等腰三角形腰长是10,底边长是16,求这个等腰三角形面积。四.课堂检测1已知直角三角形中30角所对的直角边长是cm,则另一条直角边的长是( )A. 4cm B. cm C. 6cm D. cm2ABC中,AB15,AC13,高AD12
11、,则ABC的周长为() A42 B32 C42 或 32 D37 或 333一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A. 9分米B. 15分米C. 5分米 D. 8分米4 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”他们仅仅少走了 步路(假设2步为1米),却踩伤了花草 5. 等腰ABC的腰长AB10cm,底BC为16cm,则底边上的高为 ,面积为 . 6. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 7已知:如图,四边形ABCD中,ADBC,ADDC, ABAC,
12、B=60,CD=1cm,求BC的长。五小结与反思板书设计.预习新知.课堂展示课堂检测桐梓县官仓中学教案课题18.2 勾股定理的逆定理教师:唐大章时间:2013.4教学目标1体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的证明方法。3理解原命题、逆命题、逆定理的概念及关系。教材分析重点掌握勾股定理的逆定理及简单应用难点勾股定理的逆定理的证明教学方法自主探索教具三角板课时1教学补充教学过程简记一.预习新知(阅读教材P73 75 , 完成课前预习)1.三边长度分别为3 cm、4 cm、5 cm的三角形与以3 cm、4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的
13、?2.你能证明以6cm、8cm、10cm为三边长的三角形是直角三角形吗? 图18.2-23.如图18.2-2,若ABC的三边长、满足,试证明ABC是直角三角形,请简要地写出证明过程4.此定理与勾股定理之间有怎样的关系? (1)什么叫互为逆命题(2)什么叫互为逆定理(3)任何一个命题都有 _,但任何一个定理未必都有 _5.说出下列命题的逆命题。这些命题的逆命题成立吗?(1) 两直线平行,内错角相等;(2) 如果两个实数相等,那么它们的绝对值相等;(3) 全等三角形的对应角相等;(4) 角的内部到角的两边距离相等的点在角的平分线上。二课堂展示例1:判断由线段、组成的三角形是不是直角三角形:(1);
14、 (2)(3); (4);三.随堂练习1.完成书上P75练习1、22.如果三条线段长a,b,c满足,这三条线段组成的三角形是不是直角三角形?为什么?3.A,B,C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向?4.思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?四.课堂检测1.若ABC的三边a,b,c满足条件a2+b2+c2+338=10a+24b+26c,试判定ABC的形状2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米
15、?此三角形的形状为?3.已知:如图,在ABC中,CD是AB边上的高,且CD2=ADBD。求证:ABC是直角三角形。五.小结与反思板书设计.如果三条线段长a,b,c满足,这三条线段组成的三角形是不是直角三角形?为什么?课堂展示桐梓县官仓中学教案课题勾股定理逆定理(2)教师:唐大章时间:2013.4教学目标.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。2.培养逻辑推理能力,体会“形”与“数”的结合。3.在不同条件、不同环境中反复运用定理,达到熟练使用,灵活运用的程度。4.培养数学思维以及合情推理意识
16、,感悟勾股定理和逆定理的应用价值。教材分析重点勾股定理的逆定理难点勾股定理的逆定理的应用教学方法自主探索教具三角板课时1教学补充教学过程简记一.预习新知已知:如图,四边形ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD的面积。归纳:求不规则图形的面积时,要把不规则图形 二.课堂展示例1.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?图18.2-3例2如图,小明的爸爸在鱼池边开了一块四边形
17、土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90。三.随堂练习1.完成书上P76练习32.一个三角形三边之比为3:4:5,则这个三角形三边上的高值比为 A 3:4:5 B 5:4:3 C 20:15:12 D 10:8:23.如果ABC的三边a,b,c满足关系式 +(b-18)2+=0则ABC是 _三角形。四.课堂检测1.若ABC的三边a、b、c,满足(ab)(a2b2c2)=0,则ABC是( )A等腰三角形;B直角三角形;C等腰三角形或直角三角形;D等腰直角三角形。2.若ABC的三边a、
18、b、c,满足a:b:c=1:1:,试判断ABC的形状。3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且ABBC。求:四边形ABCD的面积。4.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。6.已知ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定ABC的形状。7.如图,在正方形中,为的中点,为上一点且,求证:90。.板书设计已知:如图,四边形ABCD,ADBC,AB=4
19、,BC=6,CD=5,AD=3。求:四边形ABCD的面积。.课堂检测桐梓县官仓中学教案课题勾股定理复习(1)教师:唐大章时间:2013.4教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.教材分析重点:掌握勾股定理及其逆定理.难点理解勾股定理及其逆定理的应用.教学方法自主探索教具三角板课时1教学补充教学过程简记一.复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用其知识结构如
20、下:1.勾股定理:(1)直角三角形两直角边的_和等于_的平方就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:.这就是勾股定理(2)勾股定理揭示了直角三角形_之间的数量关系,是解决有关线段计算问题的重要依据,勾股定理的探索与验证,一般采用“构造法”通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为_.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b
21、2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示(n为正整数)的点 (3)三角形的三边分别为a、b、c,其中c为最大边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形所以使用勾股定理的逆定理时首先要确定三角形的最大边二.课堂展示例1:如果一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD中,C=90,AB=13,BC=4,CD=3,AD=12,求
22、证:ADBD 三.随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A7,24,25 B3,4,5 C3,4,5 D4,7,82.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )图1A10064A1倍 B2倍 C3倍 D4倍3.三个正方形的面积如图1,正方形A的面积为( ) A 6 B 36 C 64 D 84.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A6cm B85cm Ccm Dcm5.在ABC中,三条边的长分别为a,b,c,an21,b2n,cn2+1(n1,且n为整数),这个三角形是直角三角形吗?若是,哪
23、个角是直角四.课堂检测1两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距( )A50cm B100cm C140cm D80cm2小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为 ( )A8cm B10cm C12cm D14cm3在ABC中,C90,若 a5,b12,则 c4等腰ABC的面积为12cm2,底上的高AD3cm,则它的周长为 5等边ABC的高为3cm,以AB为边的正方形面积为6一个三角形的三边的比为51213,它的周长为60cm,则它的面积是7有一
24、个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺求竹竿高与门高桐梓县官仓中学教案课题勾股定理复习(2)教师:唐大章时间:2013.4教学目标1.掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆定理来解决实际问题2.经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理3.熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发爱国主义思想,培养良好的学习态度教材分析重点掌握勾股定理以及逆定理的应用难点应用勾股定理以及逆定理教学方法自主探索教具三角板课时1教学补充教学过程简记考点一、已知两边求第三边1在直
25、角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_2已知直角三角形的两边长为3、2,则另一条边长是_3在数轴上作出表示的点4已知,如图在ABC中,AB=BC=CA=2cm,AD是边BC上的高求 AD的长;ABC的面积点二、利用列方程求线段的长ADEBC1如图,铁路上A,B两点相距25km,C,D为两村庄,DAAB于A,CBAB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?2.如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个
26、小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离考点三、判别一个三角形是否是直角三角形1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有 2.若三角形的三别是a2+b2,2ab,a2-b2(ab0),则这个三角形是 .3.如图1,在ABC中,AD是高,且,求证:ABC为直角三角形。考点四、灵活变通1.在RtABC中, a,b,c分别是三条边,B=90,已知a=6,b=10,则边长c= 682.直角三角形中,以直角边为边长的两个正方形的面积为7,8,则以斜边为边长的正方形的面积为_3.如
27、图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外 壁爬行,要从A点爬到B点,则最少要爬行 cm4.如图:带阴影部分的半圆的面积是 (取3)5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是 6.若一个三角形的周长12cm,一边长为3cm,其他两边之差为cm,则这个三角形是_7.如图:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是 米。考点五、能力提升1.已知:如图,ABC中,ABAC,AD是BC边上的高求证:AB2-AC2=BC(BD-DC)2.如图,四边形ABCD中,F为DC的中点,E为BC上一点,且你能说明AFE是直角吗?3.如
28、图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?三.随堂检测1已知ABC中,A= B= C,则它的三条边之比为( ) A1:1:1 B1:1 :2 C1:2 :3 D1:4:12下列各组线段中,能够组成直角三角形的是( ) A6,7,8 B5,6,7 C4,5,6 D3,4,53若等边ABC的边长为2cm,那么ABC的面积为( )A cm2 B2 cm2 C3 cm2 D4cm24.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A6cm B85cm C3013cm D6013 c
29、m5.有两棵树,一棵高6米,另一棵高3米,两树相距4米一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米板书设计讲解试题桐梓县官仓中学教案课题一元一次不等式(1)教师:唐大章时间:2013.4教学目标1. 体会一元一次不等式的形成过程;2. 会解简单的一元一次不等式,并能在数轴上表示出解集;初步认识一元一次不等式的应用价值,发展学生分析问题、解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的收获与感悟经验。教材分析重点一元一次不等难点一元一次不等式教学方法自主探索 讲授法教具三角板课时1教学补充教学过程简记预习作业: 1、观察下列不等式: (1);
30、(2) (3)x4 (4)240 这些不等式有哪些共同特点? 2、(1).不等式的概念: 左右两边都是_,只含有_,并且未知数的最高次数是_的不等式,叫做一元一次不等式(2)解一元一次不等式大致要分五个步骤进行:(1)_(2)_(3)_(4)_(5)_例1:1、下列不等式中是一元一次不等式的有_。(1)3x-9 (2)3(x+2)-4xx-3 (3) (4) 例2、解下列不等式,并把解集表示在数轴上。(1)5x200 (2) 3 (3) x-42(x+2) (4)变式训练: 解下列不等式,并把解集表示在数轴上。(1) (2) (3) (4)能力提高: 1、y取何正整数时,代数式2(y-1)的值
31、不大于10-4(y-3)的值。 2、m取何值时,关于x的方程的解大于1。 3.是否存在整数m,使关于x的不等式与是同解不等式?如果存在,求出整数m和不等式的解集;如果不存在,请说明理由。板书设计.不等式的概念变式训练能力提高桐梓县官仓中学教案课题一元一次不等式(2)教师:唐大章时间:2013.4教学目标1.进一步熟练掌握解一元一次不等式2.利用一元一次不等式解决简单的实际问题教材分析重点一元一次不等式的应用难点将实际问题抽象成数学问题的思维过程教学方法自主探索教具三角板课时1教学补充教学过程简记预习作业: 1、解一元一次不等式应用题的步骤:(1)_ (2)_(3)_(4)_(5)_2、小红读一
32、本500页的科普书,计划10天内读完,前5天因种种原因只读了100页,问从第6天起平均每天至少读_页,才能按计划完成。例1、解下列不等式,并把它们的解集分别表示在数轴上(1) (2)2、一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?收获与感悟3、小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可能买几支笔?拓展:1、小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解,
33、这两种灯的照明效果和使用寿命都一样,已知小王所在地的电价为每千瓦时0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。2、某种商品进价为800元,出售时标价为1200元,后来由于该商品积压,商家准备打折出售,但要保持利润率不低于5%,你认为该商品至多可以打几折?收获与感悟3、某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元。(1)符合公司要求的购买方案有哪几种?请说明理由。(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的
34、日租金收入不低于1500元,那么应选择以上哪种购买方案?板书设计解下列不等式,并把它们的解集分别表示在数轴上(1) (2)拓展桐梓县官仓中学教案课题一元一次不等式组教师:唐大章时间:2013.4教学目标1理解一元一次不等式组及其解的意义。2. 总结解一元一次不等式组的步骤及情形.3.通过总结解一元一次不等式组的步骤,培养学生全面系统的总结概括能教材分析重点解一元一次不等式组.难点讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己的观点教学方法自主探索教具三角板课时1教学补充教学过程简记预习作业:1、 关于_的几个一元一次不等式合在一起,就组成了一元一次不等式组。1、 一元一次不等式
35、组里各个不等死的解集的_,叫做这个一元一次不等式组的解集。3、求不等式组解集的过程叫做_。填表:不等式组数轴表示解集4两个一元一次不等式所组成的不等式组的解集有以下四种情形.设ab,那么(1)不等式组的解集是xb; 同大取大 (2)不等式组的解集是xa; 同小取小(3)不等式组的解集是axb; 大小小大中间找(4)不等式组的解集是无解. 大大小小找不到这是用式子表示,也可以用语言简单表述为:同大取大;同小取小;大小小大中间找;大大小小找不到。例1:解下列不等式组,把解集在数轴上表示出来,并求出其整数解(1) (2) 变式训练:1.若有意义,求的取值范围2.解下列不等式组(1) (2) (3)如
36、果关于x的方程x+2m3=3x+7的解为不大于2的非负数,求m的范围.拓展训练:1、不等式的解为_,的解为_2、若不等式组的解集是无解,则的取值范围是_3、如果不等式组的解集是,则的取值范围是_4、若不等式组有解,则 的取值范围_板书设计两个一元一次不等式所组成的不等式组的解集有以下四种情形.拓展训练桐梓县官仓中学教案课题勾股定理教师:唐大章时间:2013.4教学目标1引导学生经历运用拼图的方法说明是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯2引导学生掌握勾股定理和它的简单应用教材分析重点能熟练运用拼图的方法证明勾股定理难点用面积证勾股定理教学方法自主探索 讲授法教具三角板课时1教学补充教学过程简记教学过程一、创设问题的情境,激发学生的学习热情,导入课题我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,