1、-同底数幂的除法试题精选(二) 一.选择题(共16小题)1已知a=6,an3,则amn的值为( ) AB.C2D.2.下列计算:x2=3,(x2)6=x8,(xy)3=9x33.其中正确的计算有()A个B个C2个D.个 已知x=2,=3,则x2m的值为()5BC.D4若3x=15,3y5,则3xy等于( )A.B.3C.5D.1 5.()2014(2)0等于() A2.2C()012D20 6.下面是某同学在一次测验中的计算摘录,其中正确的是( ) A.bb3=2b3B(a)=a7C.(ab2)3a3b6D(a)(a)7=a3 7.若am=2,an=3,则mn的值是()A1B.12C.D15x
2、3等于( ) .5B.45.x2D.189已知(amb4)(4bn)=,则m、n的值分别为( ) A.1,n=4B=2,=3Cm=3,n=4D.4,n5 1.若m、都是正整数,aan的结果是()AamB.amnn.aD.anm 1若x2y1=0,则x4y8等于() A.1.4.16 2如果m=3,an=,则am等于( ) A.18B12C.9D. .下列计算正确的是() A.2aB6m2=3 Cx214+04=2x214Dttt 已知3=4,n=,32+1的值为( ) AB.C.D 5.计算na1(an)2的结果是().1B.01D.116.在a(a),(a6)(a),(a2)3(a3)2,(
3、a)2中,计算结果为10的有( ).B.C二填空题(共14小题).(204闸北区二模)计算:x4nxn= _ .18(014红桥区二模)计算(a)10(a)3的结果等于 _ 1已知5275,则52x3的值= _ . 20已知am=2,an=,则am3=_ 21.已知:x=,=,则x2=_ 22.计算:(a2)a4a= _ 23.计算:(4)38=_.24.若2=4,2n=,则2mn_. 5计算a24a8 _ .2若5x=18,=3,则52y的算术平方根是 _ 2.已知m=6,xn=3,则m=_,(m)2xn= _.28.已知:162434+,y9,则x_,y=_.9.化简:x3(x)(x)=_
4、 30已知:x=3,3y,则:6x+23x3x的值是 _ .同底数幂的除法试题精选(二)参考答案与试题解析 一选择题(共16小题)1.已知am=6,a=,则a23n的值为( )A.9BCD考点:同底数幂的除法分析:根据同底数幂的除法和幂的乘方的性质的逆用先整理成已知条件的形式,然后代入数据计算即可.解答:解:2m3na3n(am)2(an),am=6,an=3,原式=(m)2(an)3,=623=故选D.点评:本题考查了同底数幂的除法,幂的乘方,逆用性质构造成am、an的形式是解题的关键 2下列计算:6x2=x3,(x)6=x,(3y)=93y其中正确的计算有( )A0个B.1个C.个D3个考
5、点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相除,底数不变,指数相减;幂的乘方,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.解答:解:x6x2x4,(x2)6x12,(3x)327x3y所以都不正确.故选点评:本题考查同底数幂的除法,幂的乘方,积的乘方,熟练掌握运算性质是解题的关键 3.已知x=,xn3,则x23n的值为( ) A.B.D考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可得xm,x3n,根据同底数幂的除法,可得答案解答:解:x3x2mx3n=(m)2(xn)3=233,故B正确,故选:点评:本
6、题考查了同底数幂的除法,先算幂的乘方,再算同底数幂的除法.4若x=15,3y5,则3x等于( )A5.3C5D.0考点:同底数幂的除法分析:根据同底数幂的除法,底数不变,指数相减,可得答案.解答:解:3x=3x3=55=3,故选:.点评:本题考查了同底数幂的除法,底数不变,指数相减5(2)4()203等于( )A2.2C.(2)12D.22011考点:同底数幂的除法分析:运用同底数幂的除法法则计算即可解答:解:()204()2013(2)201403=,故选:.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键. 下面是某同学在一次测验中的计算摘录,其中正确的是( ) A.3b3bB()
7、=a7C.(ab2)3a36D(a)10()7=a3考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方分析:根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘,可得答案.解答:解:(b2)3=a36,故C正确,故选:C点评:本题考查了同底数幂的除法,注意同底数幂的除法,底数不变指数相减. 7.若am=2,a,则2n的值是() .1B2C.考点:同底数幂的除法;幂的乘方与积的乘方分析:首先应用含m、an的代数式表示amn,然后将am、an的值代入即可求解.解答:解:am=,an3,a2mna2a,=(am),=43,=,故选:D.点评:本题主要考查同底数幂的除法,幂的乘方,熟练掌握运算性
8、质并灵活运用是解题的关键8.x5x等于( ) .x45C.x12.18考点:同底数幂的除法分析:根据同底数幂相除,底数不变,指数相减解答解答:解:x15x=x3x12.故选点评:本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.9已知(amb)(4bn)=,则m、n的值分别为( ) Am=1,n4m=2,=3C.m=3,n=4Dm=4,n=5考点:同底数幂的除法.专题:计算题.分析:根据同底数幂的除法法则列出关于mn的方程,求出nm的值即可.解答:解:由题意可知,m=1,解得m=;n=1,解得,n=3故选点评:本题考查的是同底数幂的除法法则,能根据题意得出关于m的方程是解答此题的关键.
9、1若m、n都是正整数,aman的结果是( ).amB.amnnC.aD.amm考点:同底数幂的除法.分析:运用同底数幂的除法法则计算即可.解答:解:nan=amn,故选:B点评:此题考查了同底数幂的除法,解题的关键是熟记法则 11.若y+0,则2x4y等于( ) .C8D.16考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:推理填空题.分析:先把原式化为2x22y3的形式,再根据同底数幂的乘法及除法法则进行计算即可.解答:解:原式x2y2,2x2y+3,=,=4.故选B.点评:本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x22y3的形式是解答此题的关键.1如果am
10、3,an=6,则m等于() A1B.1C.考点:同底数幂的除法.分析:把an化成aa,代入求出即可解答:解:am3,an=,anm=anam3=2,故选D.点评:本题考查了同底数幂的除法的应用,关键是把anm化成am的形式,用了整体代入思想. 13下列计算正确的是( )A.2aa=.m62=3 Cx20+214=2x2014D.tt3=t6考点:同底数幂的除法;合并同类项;同底数幂的乘法分析:根据合并同类项的法则,同底数幂的乘法与除法的知识求解即可求得答案.解答:解:A、2a=a,故A选项错误;B、m6m2=m,故B选项错误;C、x2+x0=x2014,故C选项正确;、t2=t5,故D选项错误
11、.故选:C点评:此题考查了合并同类项的法则,同底数幂的乘法与除法等知识,解题要注意细心.14.已知=,3n=5,32n+1的值为( ) ABC.D考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题分析:先根据同底数幂的乘法及除法,幂的乘方与积的乘方法则把原式化为3m(3n)3的形式,再把,3n5代入进行计算即可.解答:解:原式=m(3n)23423=3=.故选A点评:本题考查的是同底数幂的乘法及除法,幂的乘方与积的乘方法则,能逆用此法则把原式化为3m(3n)3的形式是解答此题的关键.15计算an+1an1(n)2的结果是( ) A.1B0C.1D1考点:同底数幂的乘法;同底
12、数幂的除法.分析:本题是同底数幂的乘法、除法以及幂的乘方的混合运算,计算时根据各自法则计算即可,特别注意的是运算的顺序解答:解:a+1a1(an)2,=a2a,=.故选A点评:做此类混合运算时首先是要记准法则,其次是要注意运算的顺序.16.在a5(a),(6)(a3),(a2)3(a3)2,(a)25中,计算结果为a10的有( ) A.CD.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;对各选项计算后即可选取答案.解答:解:a5(a)a6,(6)(a3)=a3,(a)3(a3)=(
13、)(a)=a2,(a)5a10,所以计算结果为a10的有故选.点评:本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质是解题的关键,运算时要注意符号的变化 二填空题(共14小题)1(2014闸北区二模)计算:x4nn3n 考点:同底数幂的除法.分析:运用同底数幂的除法法则计算.解答:解:x4nxn=3n.故答案为:3n点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键 18.(21红桥区二模)计算(a)1()3的结果等于a .考点:同底数幂的除法;幂的乘方与积的乘方.分析:运用同底数幂的除法,底数不变,指数相减解答:解:(a)(a)3=a故答案为:a7点评:本题主要考查
14、了同底数幂的除法,熟记法则是解题的关键 9.已知52x+1=75,则5x3的值= .考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方分析:把523化为52x+4求解即可解答:解:2x+5,52x32+14=5x+154=75625,故答案为:点评:本题主要考查了同底数幂的除法,同底数幂的乘法,解题的关键是把52x3化为2x+14求解 20已知a=2,3,则a2m3n 考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,逆运用性质计算即可解答:解:a=2,an=3,a2m3n=2ma3n,=(am)2(an),2233,=故填.
15、点评:本题考查同底数幂的除法法则的逆运算,幂的乘方的性质的逆运算,熟练掌握性质是解题的关键 2.已知:xa=4,xb=3,则xab= 考点:同底数幂的除法;幂的乘方与积的乘方.专题:推理填空题分析:根据同底数幂的除法及乘法进行计算即可.解答:解:a2b=a(xbb),=(33),=.故答案为:.点评:本题考查的是同底数幂的除法及乘法,解答此题的关键是逆用同底数幂的除法及乘法的运算法则进行计算. 22.计算:(a)34a2 a4 .考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加计算.解
16、答:解:(a)3a2,=a6a,=a2a2,a4点评:本题考查了同底数幂的除法,幂的乘方的性质,正确运用幂的运算性质,分清运算顺序是解题的关键 3计算:(a4)3a8a8 考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加,计算即可.解答:解:()a8a4,=12a84,=a44,=a8点评:本题考查了幂的乘方的性质,同底数幂的除法,熟练掌握运算性质是解题的关键 24若2m=4,2n3,则2mn= 考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法,幂的乘方的性质的逆运用
17、先表示成已知条件的形式,然后代入数据计算即可解答:解:2m=,2n=3,22mn(m)22n,13,=.故答案为:.点评:本题考查了同底数幂的除法,幂的乘方的性质,逆用运算性质,将n化为(2m)n是求值的关键,逆用幂的运算法则巧求代数式的值是中考的重要题型,由此可见,我们既要熟练地正向使用法则,又要熟练地逆向使用法则 25.计算a2a42 .考点:同底数幂的除法;同底数幂的乘法分析:根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加计算解答:解:2a4a8=+4=a2故答案为:a2点评:本题考查了同底数幂的除法及乘法的性质,正确运用幂的运算性质是解题的关键. 2.若x18,5y
18、=3,则5xy的算术平方根是 .考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方专题:计算题分析:先根据幂的乘法法则求出52y的值,再根据同底数幂的除法法则进计算出2y的值,再根据算术平方根的定义进行解答.解答:解:y=,()2=5y=,5x2y2,x2y的算术平方根是.故答案为:.点评:本题考查的是同底数幂的除法、算术平方根、幂的乘方与积的乘方法则,熟练掌握以上知识是解答此题的关键.已知m6,xn=3,则mn= 2 ,(xm)2xn= 0 .考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则及幂的乘方法则计算即可.解答:解:mnmxn=63=2(x)2xn=(xm)2
19、xn=6108,故答案为:2,8.点评:本题考查了同底数幂的乘法和幂的乘方,属于基础题,解答本题的关键是掌握同底数幂的乘法和幂的乘方法则28.已知:62=4x+,9x3y=,则x= 3 ,y= 4 .考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方得出x+=7,根据同底数幂的除法得出xy2,求出组成的方程组的解即可.解答:解:1644xy,(2)2434+34xy,+y7,9x3y=,32x3y=32,2y=2,即,+得:x=9,=,把=3代入y=4,故答案为:3,4.点评:本题考查了幂的乘方和积的乘方,同底数幂的乘法和除法的应用,题目比较典型,但有一定的
20、难度9.化简:x3(x)3(x)2=x考点:同底数幂的除法.分析:先转化为同底数幂的运算,再根据同底数幂的除法和同底数幂的乘法的运算性质进行计算.解答:解:x3()(x)2,=33x,=x2.点评:本题主要考查同底数幂的乘法,同底数幂的除法,先运算符号是利用性质的关键 3已知:4x=3,3=,则:6xy2xy3x的值是 1.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方把原式化为含有4x,3y的式子求解解答:解:4x=,y=2,6x23xy3x=6x6yx232x3x23y()32y3x=2x3y(2x)(4)3y92=8,故答案为:8.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是运用法则把6x+y23xy3化为6x6y2x2y3x-