全等三角形教案(DOC 34页).docx

上传人(卖家):2023DOC 文档编号:5591506 上传时间:2023-04-26 格式:DOCX 页数:40 大小:728.08KB
下载 相关 举报
全等三角形教案(DOC 34页).docx_第1页
第1页 / 共40页
全等三角形教案(DOC 34页).docx_第2页
第2页 / 共40页
全等三角形教案(DOC 34页).docx_第3页
第3页 / 共40页
全等三角形教案(DOC 34页).docx_第4页
第4页 / 共40页
全等三角形教案(DOC 34页).docx_第5页
第5页 / 共40页
点击查看更多>>
资源描述

1、第十二章全等三角形单元(章)教学计划1、地位与作用:本章是在七年级学过线段、角、相交线、平行线以及三角形的有关知识的基础上,进一步学习全等三角形,全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明,让学生证明三角形两条对角线的交点到三角形三边的距离相等,并进一步让学生得出这个交点在第三条角平分线上,即三角形的三条角平分线交于一点。这也为学生今后在“圆”一章学习内心作好了准备,也为今后更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;渗透建立数学模型,分类讨论等数学思想。2、目标与要求:知识与技能(1)了解全等三角形概念和性质,能够准确地辨认全等三

2、角形中的对应元素。(2)探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。(3)了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。 过程与方法(1)学习全等三角形的概念和性质,探索全等三角形的条件和性质。 (2)掌握怎样找全等三角形的对应元素,能结合一些具体问题,依照全等三角形的性质,完成线段和角的相等的推理,线段鱼角的计算问题。 (3) 利用三角形全等的条件及角的平分线的性质,初步掌握经过一步一步的推理,最后证明结论正确的方法。 情感态度与价值观 把生产实际问题抽象转化为数学问题,渗透转化思想,培养抽象、概括、分析问题和解决问

3、题的能力。3、重点与难点:重点是:三角形全等的条件,证明的基本过程,掌握证明的格式。难点是:理解证明的基本过程,掌握用综合法证明的格式。4、教法与学法:根据教学内容、教学目标和学生的认知水平,主要采取教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.教学过程中,创设适当的教学情境,证明的方向明确,过程简单,书写容易规范化,引导学生独立思考、共同探究。 5、活动步骤:一、创设情境、导入新课; 二、探索新知 合作交流; 三、应用迁移,提高巩固 练习;四、总结反思,拓展升华;五、作业布置 6、时间安排:13.1全等三角形 1课时13.2全等三角形的判定 4课时13

4、.3角的平分线的性质 2课时复习与小结 2课时全等三角形(第一课时)【教学目标】知识与技能掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。知道全等三角形有关概念,掌握寻找全等三角形中对应元素的基本方法。掌握全等三角形的性质。通过演译变换两个重合的三角形,呈现出它们之间各种不同的位置关系,从中了解并体会图形的变换思想,逐步培养动态研究几何意识。初步会用全等三角形的性质进行一些简单的计算。过程与方法围绕全等三角形的对应元素这一中心,通过观察、操作、想象、交流、等展开教学活动。设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,

5、强化了本课的中心问题-全等三角形的性质,经历理解性质的过程。运用多媒体演示图形的位置变化,使学生认识到图形具有相对运动能力。变换两个重合的三角形的位置,使它们呈现各种不同的位置关系,让学生从中了解、体会图形的变换思想,逐步培养学生动态研究几何图形的意识。情感态度与价值观学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣。给学生以充分的思考时间,有利于不同层次学生的学习。教学重点:全等三角形的性质教学难点:寻找全等三角形中的对应元素教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。课前准备:多媒体课件【教学教程】一、创设情境,引入新课1.电脑显示问题:

6、各组图形的形状与大小有什么特点?一般学生都能发现这两个图形是完全重合的。归纳:能够完全重合的两个图形叫做全等形。2.学生动手操作在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。问题:如何在另一张纸板再剪一个三角形DEF,使它与ABC全等?3.板书课题:全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“”表示,读着“全等于”如图中的两个三角形全等,记作:ABCDEF二、 探究全等三角形中的对应元素1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?2学生讨论、交流、归纳得出:.两个全等三角形

7、任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。全等三角形的性质1.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边 有什么关系?对应角呢? 全等三角形的性质: 全等三角形的对应边相等全等三角形的对应角相等 2.用几何语言表示全等三角形的性质如图:ABC DEFABDE,ACDF,BCEF(全等三角形对应边相等)AD,BE,CF(全等三角形对应角相等)探求全等三角形对应元

8、素的找法1.动画(几何画板)演示(1)图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?归纳:两个全等的三角形经过一定的转换可以重合一般是平移、翻折、旋转的方法(2)说出每个图中各对全等三角形的对应边、对应角归纳:从运动角度可以很轻松解决找对应元素的问题可见图形转换的奇妙2. 动画(几何画板)演示图中的两个三角形通过怎样的变换才能重合?用式子表示全等关系.并说出其中的对应关系.CE3. 归纳:找对应元素的常用方法有两种:(1)从运动角度看a翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素b旋转法:三角形绕某一点旋转一定角度能与另一三角

9、形重合,从而发现对应元素c平移法:沿某一方向推移使两三角形重合来找对应元素(2)根据位置元素来推理 a.有公共边的,公共边是对应边;b.有公共角的,公共角是对应角;c.有对顶角的,对顶角是对应角;d.两个全等三角形最大的边是对应边,最小的边也是对应边;e.两个全等三角形最大的角是对应角,最小的角也是对应角;三、课堂练习练习1.ABDACE,若B25, BD6,AD4,你能得出ACE中哪些角的大小,哪些边的长度吗?为什么 ?练习2.ABCFED 写出图中相等的线段,相等的角;图中线段除相等外,还有什么关系吗?请与同伴交流并写出来.四、课堂小结通过本节课学习,我们了解了全等的概念,发现了全等三角形

10、的性质,探索了找两个全等三角形对应元素的方法,并且利用性质解决简单的问题。找对应元素的常用方法有三种:(一)从运动角度看1平移法:沿某一方向推移使两三角形重合来找对应元素2翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素3旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素(二)根据位置元素来推理1全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边2全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(三)根据经验来判断1. 大边对应大边,大角对应大角2. 公共边是对应边,公共角是对应角五、课堂作业课本第33页1、2、3题六、板书设计 131

11、全等三角形一、概念二、全等三角形的性质三、性质应用 例题四、小结:找对应元素的方法运动法:翻折、旋转、平移位置法:对应角对应边,对应边对应角经验法:大边大边,大角大角公共边是对应边,公共角是对应角。【教学反思】三角形全等的判定(第1课时)教学目标知识与技能掌握三角形全等的“边边边”的条件;了解三角形的稳定性过程与方法经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程通过对问题的共同探讨,培养学生的协作精神情感态度与价值观让学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方法和享受良好的情感体验让学生体验数学来源于生活,又服务于生活的辩

12、证思想教学重点:三角形全等的条件教学难点:寻求三角形全等的条件教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。课前准备:多媒体课件【教学过程】:一、创设情境,引入新课 师出示投影片一,回忆前面研究过的全等三角形 已知ABCABC,找出其中相等的边与角 生图中相等的边是:AB=AB、BC=BC、AC=AC 相等的角是:A=A、B=B、C=C 师很好,老师这里有一个三角形纸片,你能画一个三角形与它全等吗?怎样画? 生能,先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等这样作出的三角形一定与已知的三角形纸片全等 师这位同学利用

13、了全等三角形的定义来作图请问,是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题 出示投影片二 1只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗? 2给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做 三角形一内角为30,一条边为3cm 三角形两内角分别为30和50 三角形两条边分别为4cm、6cm 学生活动:分组讨论、探索、归纳,最后以组为单位出示结果作补充交流 结果展示: 1只给定一条边时:只给定一个角时:2给出的两个条件可能是:一边一内角、两内角、两边 可以发现按这些条件画出的三角形都不能保证一定

14、全等 师那么,给出三个条件画三角形,你能说出有几种可能的情况吗? 生四种可能即:三内角、三条边、两边一内角、两内有一边 师在大家刚才的探索中,我们已经发现三内角不能保证三角形全等下面我们就来逐一探索其余的三种情况二 、探究 做一做: 已知一个三角形的三条边长分别为6cm、8cm、10cm你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 学生活动: 1讨论作法 2比较、验证结果 3探究、发现、总结规律 教师活动: 教师可参与到学生的制作与讨论中,及时发现问题,因势利导 活动结果展示:1作图方法:(教师可提示画法,因为学生对尺规作图不是很熟悉) 先画一线段AB,使得A

15、B=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm 2以小组为单位,把剪下的三角形重叠在一起,发现都能够重合这说明这些三角形都是全等的 3特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形A/B/C/,使AB=A/B/、AC=A/C/、BC=B/C/将A/B/C/剪下,发现两三角形重合这反映了一个规律: 三边对应相等的两个三角形全等,简写为“边边边”或“SSS” 师用上面的规律可以判断两个三角形全等判断两个三角形全等的推理

16、过程,叫做证明三角形全等所以“SSS”是证明三角形全等的一个依据请看例题 三、例题例如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD 师生共析要证ABDACD,可以看这两个三角形的三条边是否对应相等 证明:因为D是BC的中点 所以BD=DC 在ABD和ACD中 所以ABDACD(SSS)生活实践介绍:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的三角形的这个性质叫做三角形的稳定性所以日常生活中常利用三角形做支架就是利用三角形的稳定性例如屋顶的人字梁、大桥钢架、索道支架等用尺规作一个角等于已知角已知:AOB

17、求作: AOB=AOB作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA, OB 于点C、D;(2)画一条射线OA,以点O为圆心,OC 长为半 径画弧,交OA于点C;(3)以点C为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D; (4)过点D画射线OB,则AOB=AOBBADBOODCCA四、课时小结本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS并利用它可以证明简单的三角形全等问题五、布置作业课本P43习题13.2中的第1,2题【教学反思】 三角形全等的条件(第2课时)【教学目标】:知识与技能理解三角形全等的“边角边”的条件掌握三角形全等的“SAS

18、”条件,了解三角形的稳定性能运用“SAS”证明简单的三角形全等问题过程与方法经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程掌握三角形全等的“边角边”条件在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明情感态度与价值观通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神教学重点:三角形全等的条件教学难点:寻求三角形全等的条件教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。课前准备:多媒体课件【教学过程】:一、创设情境,导入新课 师在上节课的讨论中,我们发现三角形中只给一个条件或两

19、个条件时,都不能保证所画出的三角形一定全等给出三个条件时,有四种可能,能说出是哪四种吗? 生三内角、三条边、两边一内角、两内角一边 师很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等今天我们接着研究第三种情况:“两边一内角” (一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况? 生两种 1两边及其夹角 2两边及一边的对角 师按照上节方法,我们有两个问题需要探究(二)探究1:先画一个任意ABC,再画出一个A/B/C/,使AB= A/B/、AC=A/C/、A=A/(即保证两边和它们的夹角对应相等)把画好的三角形A/B/C/剪

20、下,放到ABC上,它们全等吗? 探究2:先画一个任意ABC,再画出A/B/C/,使AB= A/B/、AC= A/C/、B=B/(即保证两边和其中一边的对角对应相等)把画好的A/B/C/剪下,放到ABC上,它们全等吗? 学生活动:1学生自己动手,利用直尺、三角尺、量角器等工具画出ABC与A/B/C/,将A/B/C/剪下,与ABC重叠,比较结果 2作好图后,与同伴交流作图心得,讨论发现什么样的规律 教师活动: 教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程二 、探究操作结果展示: 对于探究1: 画一个A/B/C/,使A/B/=AB,A/C/

21、=AC,A/=A 1画DA/E=A; 2在射线A/D上截取A/B/=AB在射线A/E上截取A/C/=AC;3连结B/C/ 将A/B/C/剪下,发现ABC与A/B/C/全等这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”) 播放课件: 两边和它们的夹角对应角相等的两个三角形全等简称“边角边”和“SAS”如图,在ABC和DEF中, 对于探究2: 学生画出的图形各式各样,有的说全等,有的说不全等教师在此可引导学生总结画图方法: 1画DB/E=B; 2在射线B/D上截取B/A/=BA; 3以A/为圆心,以AC长为半径画弧,此时只要C90,弧线一定和射线B/E交于两点

22、C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和ABC全等的播放课件: 也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等所以它不能作为判定两三角形全等的条件 归纳总结: “两边及一内角”中的两种情况只有一种情况能判定三角形全等即: 两边及其夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”) 三、应用举例例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA连结BC并延长到E,使CE=CB。连结DE,那么量出DE的长就是A、B的距离。为什么? 师生共析如果能证明ABCDEC,就可以得出

23、AB=DE。 在ABC和DEC中,AC=DC、BC=EC要是再有1=2,那么ABC与DEC就全等了。而1和2是对顶角,所以它们相等。 证明:在ABC和DEC中 所以ABCDEC(SAS) 所以AB=DE四、探索“SSA”能否识别两三角形全等问题 两边一角分别相等包括“两边夹角”和“两边及其中一边的对角”分别相等两种情况,前面已探索出“SAS”判定三角形全等的方法,那么由“SSA”的条件能判定两个三角形全等吗?如图,在ABC 和ABD 中,AB =AB,AC = AD,B =B,但ABC 和ABD 不全等。五、课堂小结1根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件。2找使

24、结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理。六、布置作业课本P43习题13.2中的第3,4题 【教学反思】三角形全等的判定(第3课时)【教学目标】:知识与技能理解三角形全等的条件:角边角、角角边三角形全等条件小结掌握三角形全等的“角边角”“角角边”条件能运用全等三角形的条件,解决简单的推理证明问题过程与方法经历探究全等三角形条件的过程,进一步体会操作、归纳获得数学规律的过程掌握三角形全等的“角边角”“角角边”条件能运用全等三角形的条件,解决简单的推理证明问题情感态度与价值观通过画图、探究、归纳、交流,使学生获得一些研

25、究问题的经验和方法,发展实践能力和创新精神教学重点:已知两角一边的三角形全等探究教学难点:灵活运用三角形全等条件证明教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。课前准备:多媒体课件【教学过程】一、创设情境,导入新课 1复习:(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边 (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? 三种:定义;SSS;SAS 2师在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢? 二 、探究师三角形中已知两角一边有几种可能? 生1两角和它们的夹边

26、 2两角和其中一角的对边 做一做: 三角形的两个内角分别是60和80,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律? 学生活动:自己动手操作,然后与同伴交流,发现规律教师活动:检查指导,帮助有困难的同学 活动结果展示: 以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”) 师我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个A/B/C/,使A=A/、B=B/、AB= A/B/呢? 生能 学生口述

27、画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解 生先用量角器量出A与B的度数,再用直尺量出AB的边长 画线段A/B/,使A/B/=AB 分别以A/、B/为顶点,A/B/为一边作D A/B/、EB/A,使D/AB=CAB,EB/A/=CBA 射线A/D与B/E交于一点,记为C/ 即可得到A/B/C 将A/B/C与ABC重叠,发现两三角形全等师于是我们发现规律: 两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”) 这又是一个判定三角形全等的条件 生在一个三角形中两角确定,第三个角一定确定我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角

28、形全等”呢?师你提出的问题很好。温故而知新嘛,请同学们来验证这种想法。三、练习如图,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?证明:A+B+C=D+E+F=180 A=D,B=E A+B=D+E C=F 在ABC和DEF中 ABCDEF(ASA) 于是得规律: 两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”) 四、例题讲解例如下图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE 师生共析AD和AE分别在ADC和AEB中,所以要证AD=AE,只需证明ADCAEB即可 学生写出证明过程 证明:

29、在ADC和AEB中 所以ADCAEB(ASA)ABCDE所以AD=AE例2如图,AEBE,ADDC,CD =BE,DAB=EAC求证:AB =AC 师请同学们把三角形全等的判定方法做一个小结。 学生活动:自我回忆总结,然后小组讨论交流、补充。 有五种判定三角形全等的条件 1全等三角形的定义 2边边边(SSS)ABCDEF 3边角边(SAS) 4角边角(ASA) 5角角边(AAS)推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径练习:如图,E,F 在线段AC上,ADCB,AE = CF若B =D,求证:DF =BE五、课堂小结 我们有五种判定三角形全等的方法:

30、1全等三角形的定义2判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)六、布置作业习题第4,5,7题【教学反思】三角形全等的判定(第4课时)【教学目标】知识与技能直角三角形全等的条件:“斜边、直角边”。过程与方法经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系掌握直角三角形全等的条件:“斜边、直角边”。能运用全等三角形的条件,解决简单的推理证明问题。情感态度与价值观通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法发展实践能力和创新精神。教学重点:运用直角三角形全等的条件解决一些实际问题。教学难点:熟练运用直角三角形全等的条件解决一些实际问题。

31、教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。课前准备 多媒体课件【教学过程】:一、提出问题,复习旧知1、判定两个三角形全等的方法: 、 、 、 2、如图,RtABC中,直角边是 、 ,斜边是 3、如图,ABBE于C,DEBE于E,(1)若A=D,AB=DE,则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)(2)若A=D,BC=EF,则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)(3)若AB=DE,BC=EF,则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)(4)若AB=DE,BC=EF,AC=DF则ABC与DEF (填“全等”或

32、“不全等” )根据 (用简写法)二 、创设情境,导入新课如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量(播放课件) (1)你能帮他想个办法吗? (2)如果他只带了一个卷尺,能完成这个任务吗? (1)生能有两种方法第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等可是,没有量角器,只有卷尺,那么他只

33、能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等师这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等你相信吗? 三、探究 做一做: 已知线段AB=5cm,BC=4cm和一个直角,利用尺规做一个直角三角形,使C=90,AB作为斜边做好后,将ABC剪下与同伴比较,看能发现什么规律? (学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法老师做多媒体课件演示,激发学习兴趣) 作法: 第一步:作MCN=90 第二步:在射线CM上截取CB=4cm 第三步:以B为圆心,5cm为半径画弧交射线CN于点A 第四步:连结

34、AB就可以得到所想要的RtABC(如下图所示) 将RtABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等 可以验证,对一般的直角三角形也有这样的规律 探究结果总结: 斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”) 师你能用几种方法说明两个直角三角形全等呢? 生直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、ASA、AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定 师很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行四、例题:例1如图,AC

35、BC,BDAD,AC=BD 求证:BC=AD 分析:BC和AD分别在ABC和ABD中,所以只须证明ABCBAD,就可以证明BC=AD了 证明:ACBC,BDAD D=C=90 在RtABC和RtBAD中 RtABCRtBAD(HL) BC=AD例2有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角ABC和DFE有什么关系? 师生共析ABC和DFE分别在RtABC和RtDEF中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看 证明:在Rt

36、ABC和RtDEF中 所以RtABCRtDEF(HL) ABC=DEF 又DEF+DFE=90 ABC+DFE=90即两滑梯的倾斜角ABC与DFE互余课堂练习练习1、2 五、课时小结 至此,我们有六种判定三角形全等的方法: 1全等三角形的定义 2边边边(SSS) 3边角边(SAS)4角边角(ASA) 5.角角边(AAS) 6.HL(仅用在直角三角形中)六、布置作业(必做题)习题第6,7,8题(选做题)习题第13题 角平分线(第1课时)【教学目标】一、知识与技能理解角平分线的画法应用三角形全等的知识,解释角平分线的原理。会用尺规作一个已知角的平分线。二、过程与方法在探索角的平分线的画法和性质中培

37、养学生探究问题的兴趣,增强解决问题的信心。三、情感态度与价值观在利用尺规作图的过程中,培养学生动手操作能力与探索精神。【教学重点】利用尺规作已知角的平分线。【教学难点】角的平分线性质的应用。【教学课型】新授课【教学方法】采用启发诱导,实例探究,讲练结合,小组合作等方法。【课前准备】 多媒体课件【教学过程】:一、创设情境、导入新课 议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线。你能说明它的道理吗? 二 、探究新知:活动1:学生活动:观看多媒体课件,讨论操作原理。 归纳:用三角形全等,就可以解决角相

38、等、线段相等的一些问题。 通过上述探究,能否总结出尺规作已知角的平分线的一般方法。自己动手做做看。然后与同伴交流操作心得。 讨论结果展示: 作已知角的平分线的方法: 已知:AOB 求作:AOB的平分线 作法: (1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N。 (2)分别以M、N为圆心,大于MN的长为半径作弧两弧在AOB内部交于点C。(3)作射线OC,射线OC即为所求。 练一练: 任意画一角AOB,作它的平分线。活动2:探索角平分线的性质按以下步骤折纸1.在准备好的三角形的每个顶点上标好字母;A、B、C。把角A对折,使得这个角的两边重合。2.在折痕(即平分线)上任意找一点C,3.过

39、点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。4.将纸打开,新的折痕与OB边交点为E。角平分线的性质:角平分线上的点到角的两边的距离相等。下面用我们学过的知识证明发现:如图,已知AO平分BAC,OEAB,ODAC。求证:OE=OD。活动3:解决简单问题,巩固角的平分线的性质ABCDEF 练习1下列结论一定成立的是 (1)OC 平分AOB,点P 在OC 上,D,E 分 别为OA,OB 上的点,则PD =PE。(2)点P 在OC 上,PDOA,PEOB,垂足 别为D,E,则PD =PE。 (3)OC 平分AOB,点P 在OC 上,PDOA, 垂足为D若PD =3,则点

40、P 到OB 的距离为3。练习2如图,ABC中,B =C,AD 是BAC的平分线, DEAB,DFAC,垂足分别为E,F求证:EB =FC.在此题的已知条件下,你还能得到哪些结论?三、课堂小结本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并探究了角平分线的性质。四、布置作业教材习题第2、4、5题。教学反思角平分线(第2课时)【教学目标】一、知识与技能理解角的平分线的性质会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”。二、过程与方法会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”。能应用这两个性质解决一些简单的实际问题。三、情感态度与价值观通过折纸、画图、文字一符号的翻译活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣。【教学重点】角平分线的性质及其应用。【教学难点】灵活应用两个性质解决问题。【教学课型】新授课【教学方法】采用启发诱导,实例探究,讲练结合,小组合作等方法。【课前准备】 多媒体课件【教学过程】:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(全等三角形教案(DOC 34页).docx)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|