1、物理竞赛复赛模拟卷1.试证明:物体的相对论能量E与相对论动量P的量值之间有如下关系: 2. 在用质子轰击固定锂靶的核反应中,(1)计算放出粒子的反应能。(2)如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到粒子的能量有多大?有关原子核的质量如下:,1.007825;,4.002603;,图51-217.015999.3. 一个处于基态的氢原子与另一个静止的基态氢原子碰撞。问可能发生非弹性碰撞的最小速度为多少?如果速度较大而产生光反射,且在原速度方向和反方向可以观察到光。问这种光的频率与简正频率相差多少?氢原子的质量为1.6710-27kg,电离能。4. 如图11-136所示,光滑无底圆筒
2、重W,内放两个重量均为G的光滑球,圆筒半径为R,球半径为r,且rR2r,试求图11-136圆筒发生倾倒的条件。12L,GL,G(甲)1G(乙)B2FG(丙)5. 两个完全相同的木板,长均为L,重力均为G,彼此以光滑铰链A相连,并通过光滑铰链与竖直墙相连,如图(甲)所示。为使两木板达水平状态保持平衡,问应在何处施加外力?所施加的最小外力为多大? 图11-5056. 如图11-505所示,屋架由同在竖直面内的多根无重杆绞接而成,各绞接点依次为1、29,其中绞接点8、2、5、7、9位于同一水平直线上,且9可以无摩擦地水平滑动。各绞接点间沿水平方向上的间距和沿竖直方向上的间距如图所示,绞接点3承受有竖
3、直向下的压力P/2,点1承受有竖直向下的压力P,求绞接点3和4间杆的内力。7. 一平直的传送带以速度v=2m/s匀速运行,传送带把A点处的零件运送到B点处,A、B两点之间相距L=10m,从A点把零件轻轻地放到传送带上,经过时间t=6s,能送到B点,如果提高传送带的运动速率,零件能较快地传送到B点,要让零件用最短的时间从A点传送到B点处,说明并计算传送带的运动速率至少应多大?如要把求得的速率再提高一倍,则零件传送时间为多少()? 图12-318. 一物体以某一初速度v0开始做匀减速直线运动直至停止,其总位移为s,当其位移为2/3s时,所用时间为t1;当其速度为1/3v0时,所用时间为t2,则t1
4、、t2有什么样的关系?9一根长为1m具有小内截面的玻璃管,两端开口,一半埋在水中。在上端被覆盖后,把玻璃管提升起来并取出水面。问玻璃管内留下的水柱高度为多少。10 静止的原子核衰变成质量为m1,m2,m3的三个裂片,它们的质量损为m。若三裂片中每两片之间速度方向的夹角都是120,求每个裂片能量。11.玻璃圆柱形容器的壁有一定的厚度,内装一种在紫外线照射下会发出绿色荧光的液体,即液体中的每一点都可以成为绿色光源。已知玻璃对绿光的折射率为n1,液体对绿光的折射率为n2。当容器壁的内、外半径之比r:R为多少时,在容器侧面能看到容器壁厚为零?12.(1)用折射率为的透明物质做成内半径、外半径分别为a、
5、b的空 ba心球,b远大于a,内表面涂上能完全吸光的物质。问当一束平行光射向此球时被吸收掉的光束横截面积为多大?(注意:被吸收掉的光束的横截面积,指的是原来光束的横截面积,不考虑透明物质的吸收和外表面的反射。)图33-114所示是经过球心的截面图。(2)如果外半径b趋于a时,第(1)问中的答案还能成立?为什么?13.真空中有一个半径为R的均匀透明球,今有两束相距为2d(dR)对称地(即两光束与球的一条直径平行并且分别与其等距离)射到球上,试就球的折射率n的取值范围进行讨论(1)n取何值时两束光一定在球内相交?(2)n取何值时两束光一定在球外相交?(3)如果n、d、R均已给定,如何判断此时两束光
6、的交点是在球内还是在球外。、14一点电荷+q和半径为a的接地导体的球心相距为h,求空间的电势分布。15电荷q均匀分布在半球面ACB上,球面的半径为R,CD为通过半球顶点C与球心O的轴线,如图41-91。P、Q为CD轴线上在O点两侧,离O点距离相等的两点,已知P点的电势为Up,试求Q点的电势UQ。1.试证明:物体的相对论能量E与相对论动量P的量值之间有如下关系: 证明: 读者可试为之,从入手证明它等于。2. 在用质子轰击固定锂靶的核反应中,(1)计算放出粒子的反应能。(2)如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到粒子的能量有多大?有关原子核的质量如下:,1.007825;,4.00
7、2603;,图51-217.015999.解:(1)核反应方程如下: 静质量 动 能 由总质量和总能量守恒: 由反应能Q的定义得: (兆电子伏特)其中: 兆电子伏特 =931.5兆电子伏特(2)设锂靶是静止的,根据动量守恒,可知,反应所产生的两个相同的粒子(核),应沿入射质子的方向对称分开,如图51-21所示。由动量守恒定律有 矢量合成的三角形,两底角皆为,又因,因而有已知反应能Q=17.35兆电子伏特,且 其中兆电子伏特,可得 =9.175(兆电子伏特)即反应所生成的粒子其能量为9.175兆电子伏特。粒子飞出方向与入射质子的方向之间的夹角为,因此 由于,得: 代入反应能Q的定义式: 将上式中
8、质量数改为质量比得 其中,代入上式: 所以 所以 由此可知,在垂直于质子束的方向上观察到的能量近似就是9.175兆电子伏特。3. 一个处于基态的氢原子与另一个静止的基态氢原子碰撞。问可能发生非弹性碰撞的最小速度为多少?如果速度较大而产生光反射,且在原速度方向和反方向可以观察到光。问这种光的频率与简正频率相差多少?氢原子的质量为1.6710-27kg,电离能。 解:处于基态的氢原子能量为,第二激发能量为被氢原子吸收的最小能量子为 我们必须求出在碰撞中能量损失为以上数值的最小速度。如果碰撞是完全非弹性的,则碰撞中能量损失最大,碰撞后的速度将是初动能和末动能之差为 这个值应等于最小的能量子 因此 在
9、非弹性碰撞后,两个原子的速度为 本题第二间的解答与多普勒效应有联系。对于比光速小很多的速度,相对速度之比给出频率相对变化的极好近似。故有 两束光的频率按此比率稍小于或稍大于简正频率4. 如图11-136所示,光滑无底圆筒重W,内放两个重量均为G的光滑球,圆筒半径为R,球半径为r,且rR2r,试求图11-136圆筒发生倾倒的条件。分析:如果对两个小球和无底圆筒分别隔离分析受力再列方程组,较复杂,采取整体法较好。解:根据物体平衡条件,列出以下方程:选择两个小球作为研究对象,则在竖直方向上有 N-2G=0 (1)以整体为研究对象,若翻倒必以A为轴逆时针方向旋转,在临界态下对A的力矩和为零。此时,系统
10、受力情况为:两物体的重力,桌面对球支持力N,筒的重力W,它们对A的力矩不为零,桌面对筒的支持力过A点,力矩为零,故有 (2)将1式代入2式有 若该圆筒倾倒必须有。讨论:(1)从答案中可以看出,当G大W小,r与R很接近,就容易倾倒,这也符合重心高、支面小稳度就小的结论。(2)如果是一个有底圆筒,则在没有其他力推它的情况下,就绝不会倾倒。请同学们想一想,这是为什么?5. 两个完全相同的木板,长均为L,重力均为G,彼此以光滑铰链A相连,并通过光滑铰链与竖直墙相连,如图11-245(甲)所示。为使两木板达水平状态保持平衡,问应在何处施加外力?所施加的最小外力为多大?分析:要使两板均处于平衡状态,外力只
11、能作用在板2上,作用点应位于铰链A与板2的重心之间,以便使板1的右端受到向上的作用力,方可使板1也处于平衡状态。为使作用力最小,外力应与木板垂直。解:如图11-245(乙)、(丙)所示。为使板1达水平平衡状态,其右端A应受到向上的作用,的施力物体是板2左端。根据力矩平衡条件有12L,GL,G(甲)1G(乙)B2FG(丙)图11-245解之得 隔离木板2,其左端受到(与为作用力的反作用力)及重力mg作用,为使板2呈水平且平衡,外力F的作用点应在和G的作用点之间。设F作用点距A为x,选F作用点B为转轴,根据力矩平衡条件有 将代入上式得 解之得 板2所受合力应为0,有 点评:本题着重领会由结果或效果
12、反推原因的思想方法,和F的方向及作用点均由此方法推出。本题两次使用隔离法。 图11-5056. 如图11-505所示,屋架由同在竖直面内的多根无重杆绞接而成,各绞接点依次为1、29,其中绞接点8、2、5、7、9位于同一水平直线上,且9可以无摩擦地水平滑动。各绞接点间沿水平方向上的间距和沿竖直方向上的间距如图所示,绞接点3承受有竖直向下的压力P/2,点1承受有竖直向下的压力P,求绞接点3和4间杆的内力。解: 由于点9可沿水平方向无摩擦滑动,故屋架在点9处所受外力只可能沿竖直方向,设为N9。由于屋架所受外力N9、P/2和P均沿竖直方向,则屋架在点8所受的外力也只可能沿竖直方向,设其为N9。以整个屋
13、架为对象,列各外力对支点8的力矩平衡方程,有图11-506 所以 N9的方向竖直向上。又由整个屋架的受力平衡关系应有 所以 N8的方向竖直向上。假设将绞接点5、6、7、9这部分从整个屋架中隔离出来,则这部分受到杆15、杆47、杆36的作用力,这几个作用力均沿与杆15平行的方向,设其以一个力T表示,则这个力T也必与杆15方向平行。此外,这部分还受到杆25的作用,设其为T25,显然T25的方向应沿水平方向;这部分还受到支持力N9的作用。这样,这部分就等效为受T、T25和N9三个力的作用而平衡。则表示此三力的矢量构成一个封闭三角形,由前述此三力的方向关系可以确定,这一三角形只能是如图11-506所示
14、的三角形,由此三角形可见,图11-507 杆25对点5的作用力方向水平向左,可见杆25中的内力为张力。又假设取绞接点8为研究对象,它受到支持力N8和杆82对它的作用力T82和杆81对它的作用力T81,由于此三力平衡,则N8与T82的合力必沿杆81的方向,可见应有图11-508 且T82的方向应水平向右,即杆82的内力为张力。再假设取绞接点2为研究对象,由以上分析知,其左、右两水平杆对它的作用力均为拉力,其大小分别为P和P/2。而另外只有杆24能对点2提供水平方向的分力,则为使点2在水平方向受力平衡,杆24作用于点2的力必沿由2指向点4的方向,进而为使点2在竖直方向上受力平衡,则杆12对点2的作
15、用力必沿竖直向下的方向。综合上述可得点2的受力如图11-507所示。由图知 故得 即杆24中的内力为张力,其大小为最后以点4为研究对象,它受到与之相连的三根杆的三个力的作用。此三力应互相平衡。现以T42、T47、T43表示这三个力,由于T42的方向是确定的(杆42的内力为张力,则T42必沿由点4指向点2的方向),而T47、T43又只能沿对应杆的方向,则此三力只可能取如图11-508所示的方向。由点4在水平方向的受力平衡,应有 所以 由点4在竖直方向的平衡,应有 =P即杆43中的内力为张力,大小为P。7. 一平直的传送带以速度v=2m/s匀速运行,传送带把A点处的零件运送到B点处,A、B两点之间
16、相距L=10m,从A点把零件轻轻地放到传送带上,经过时间t=6s,能送到B点,如果提高传送带的运动速率,零件能较快地传送到B点,要让零件用最短的时间从A点传送到B点处,说明并计算传送带的运动速率至少应多大?如要把求得的速率再提高一倍,则零件传送时间为多少()?分析:零件在传递带上加速运动,当零件与传送带的速度相等时,就与传送带一起作匀速运动,这就说明了传送带的速度大,它加速的时间长,由于传送带的长度一定,只要零件在这有限的长度内一直是加速的,在此加速过程中得到的最大速度也就是传送带要使零件一直加速具有的最小速度,若传送带的速度再加大,也不能使零件运送的时间变短。反过来看,若是零件以一定的初速度
17、滑上传送带,它在传送带上运动的时间有一个最大值和最小值,显然,最小值就是它在传送带一直是加速的,而最大值就是零件在传送带上一直是减速的,同样地,减速过程中对于传送带的速度也有一个临界值,当传送带小于这个临界值时,零件到达传送带另一端的时间不会变。这两个临界值是值得注意的。解:零件的初速度为零,放在传送带上,受到传送带对它的滑动摩擦力,提供它作加速运动所需要的外力,即。若零件一直是加速,到达B点的速度为,由题意可知, 。显然这是不可能的,当零件与传送带的速度相等时,它们之间的滑动摩擦力消失,零件与传送带一起作匀速运动,由题意可知,代入数据后解得。要使零件能较快地从A点到达B点,则零件在A、B之间
18、应该一直加速,也就是零件到达B点时的速度,而 ,。故最短的时间若传送带的速率提高一倍,则零件传送的时间不变,这是因为零件一直是加速的,由于加速度和加速的距离一定,故运行的时间也就一定了,还是s。8. 一物体以某一初速度v0开始做匀减速直线运动直至停止,其总位移为s,当其位移为2/3s时,所用时间为t1;当其速度为1/3v0时,所用时间为t2,则t1、t2有什么样的关系?解法一:设物体的加速度为a(大小),由速度公式得 有 (1)根据位移公式得 且 此两式联立得 解之得 因为该物体运动的总时间,因此有,由此知只能取 (2)比较(1)、(2)式可知 解法二:物体在时间内的位移为 (3)物体在时间内
19、的位移为 (9)比较(3)、(4)式可知,因而其对应的时间应满足。解法三:根据题意作出物体的-t图像如图12-31所示,显然,当经过时间时,发生的位移早已超过。原因是,根据图中,由此可知,表示的位移为,即在时间内发生的位移为,所以,。9一根长为1m具有小内截面的玻璃管,两端开口,一半埋在水中。在上端被覆盖后,把玻璃管提升起来并取出水面。问玻璃管内留下的水柱高度为多少。解:埋入水中后,玻璃管中水柱为0.5m。取出水面时,有一小部分水流出。如留下的水柱高度为h,水管内的空气压强可用玻意耳-马略特定律算出: (1)式中L=1m,A为玻璃管的截面。玻璃管外的压强等于玻璃管内水柱和空气的压强之和。 (2
20、)其中为水的密度。解此方程,得出这从物理上看是可接受的数值。10静止的原子核衰变成质量为m1,m2,m3的三个裂片,它们的质量损为m。若三裂片中每两片之间速度方向的夹角都是120,求每个裂片能量。解: 由题建立如下坐标系图(51-1)原子核衰变释放能量: 由能量守恒知: yxmmm图51-1由轴方向动量守恒得: 又由y轴方向动量守恒得: 又 11.玻璃圆柱形容器的壁有一定的厚度,内装一种在紫外线照射下会发出绿色荧光的液体,即液体中的每一点都可以成为绿色光源。已知玻璃对绿光的折射率为n1,液体对绿光的折射率为n2。当容器壁的内、外半径之比r:R为多少时,在容器侧面能看到容器壁厚为零?分析: 所谓
21、“从容器侧面能看到容器壁厚为零”,是指眼在容器截面位置看到绿光从C点处沿容器外壁的切线方向射出,即本题所描述为折射角为90的临界折射,因为题中未给出、的大小关系,故需要分别讨论。图33-104解:(1)当时因为是要求的最小值,所以当时因为,所以荧光液体发出的光在容器内壁上不可能发生折射角为的临界折射,因此当时,所看到的壁厚不可能为零了,当时,应考虑的是图33-105中ABCD这样一种临界情况,其中AB光线的入射角为90,BC光线的折射角为,此时应该有在直角三角形OBE中有 因为图33-104和图33-105中的角是相同的,所以,即将代入,可得当 时,可看到容器壁厚为零。上面的讨论,图33-10
22、4和图33-105中B点和C点的位置都是任意的。故所得条件对眼的12.(1)用折射率为的透明物质做成内半径、外半径分别为a、b的空 ba图33-114心球,b远大于a,内表面涂上能完全吸光的物质。问当一束平行光射向此球时被吸收掉的光束横截面积为多大?(注意:被吸收掉的光束的横截面积,指的是原来光束的横截面积,不考虑透明物质的吸收和外表面的反射。)图33-114所示是经过球心的截面图。(2)如果外半径b趋于a时,第(1)问中的答案还能成立?为什么?分析:(1)如图33-115所示,不被球吸收的极限光线是与球相切的光线AB,因此被吸收掉的光束横截面积应该是以R 图33-115为半径的一个圆盘,面积
23、为。利用折射定律和相关几何关系式不难求出R而得解。(2)在b趋于的过程中,当b减小到一定程度时,入射到b球面上的所有光线折射后可能都会与球面相交,此时如果b再度减小,则依据第(1)问计算出的结果就不能成立。解:(1)如图33-115所示,CO为穿过球心的光线,与CO相距为R的光线在b球面折射后折射光线AB恰好与球相切,则有由折射定律 所以 图33-116又因为 ,所以 即被吸收掉的光束横截面积为。(2)在b趋于达到一定程度时,从第(1)问的结果可知,当b减小到时,即入射到此空心球上的全部光线都将被吸收掉,此时极限光线的入射角,而R=b,如图33-116所示。如果b再减小,则入射到此空心球上的全
24、部光线仍将被吸收掉,此时极限入射光线(即入射角)的折射 图33-117线并不与内球表面相切,所以被吸收光束截面积为的结论不再成立。被吸收光束截面积此时为,参见图33-117所示。讨论:(1)本题第(1)问可以改为求经过空心球折射后的光束在球右边形成的出射光束的截面积大小是多少的问题。从左边平行入射到空心球的光束只有AE区域间的光线经外球面折射后能够从右半球折射出来,如图33-115所示。与球相切的光线AB光b球于D,过E点的光线入射角为,因折射率为,所以该折射光线的折射角为,即折射光线刚好交于b球于F点。设,D到直线OF的距离为,且 ,而出射光束截面积。由几何关系易知,即,所以可求出。图33-
25、118(2)如果把问题改为空心球的内表面没有涂上吸光物质,而要求进入球内空心部分的光束在球壳外的截面积大小是多少。因为距中心光线CO越远的光线,在两球面上的入射角越大,因此抓住经外球面折射后的光线在内球面上的入射角刚好等于光从介质进入空气的临界角这条特殊光线来考虑,如图33-118所示。设角为光由介质射入空气的临界角,在ABO中,有,又由,由图可知。利用以上几个关系式可得,故所求射入球内空心部分的光束在球外的截面积点评:从本例的解答中可看出,正确分析和作出边界光线是解决问题的关键。边界光线是随着具体问题的不同而改变的,要注意针对具体问题灵活把握。13.真空中有一个半径为R的均匀透明球,今有两束
26、相距为2d(dR)对称地(即两光束与球的一条直径平行并且分别与其等距离)射到球上,试就球的折射率n的取值范围进行讨论(1)n取何值时两束光一定在球内相交?(2)n取何值时两束光一定在球外相交?图33-123(3)如果n、d、R均已给定,如何判断此时两束光的交点是在球内还是在球外。分析:设当球的折射率为n0时,两束光刚好交于球面上,如图33-123所示。令光线射入球中时的入射角为i,折射角为r,则由图中的几何关系有 又由折射定律有 由上两式解得 又由图中的几何关系可以得到 由上式可见,对于某一个确定的比值,为使两光线刚好交于球面,球的折射率有一个确定的值n0与之对应。这样,我们可以假想,若球的实
27、际折射率n不等于n0时,则两光线进入球内时的情况与前面图示的情况有所不同,即两光线不是交于球面上。当时,两光线将比图示情况偏折得更厉害(图中角r将更小),两光线的交点必在球内;当时,两光线将比图示情况偏折得少一些(图中的角r将大一些),两光线的交点必在球外。若以作为一个变量来讨论上述问题,由于,故由此确定的n0的范围是。解:(1)当时,对于任何来说,都有,即不管球的半径和两光线间的距离如何,两光线都必定在球内相交。(2)当时,对于任何来说,都有,即不管球的半径和两光线间的距离如何,两光线都必定在球外相交。(3)对于任意给定的n、R和d,则只需比较n与n0的大小即可确定两光线的交点是在球内还是在
28、球外:当时,两光线的交点在球内;当时,两光线的交点在球面上;当时,两光线的交点在球外;14一点电荷+q和半径为a的接地导体的球心相距为h,求空间的电势分布。图41-85(a)分析:此处是电荷与导体上的感应电荷共同作用的情况,此处导体是一导体球,而非平板。我们自然地猜想,球上的感应电荷可否用像电荷等效替代?若可以,该电荷应在何处?解:在导体球面上,电力线与球面正交,从电力线会聚的趋势(如图41-85(a)来看,感应电荷与-电荷相当。据对称性,应在z轴上,设其距球心。如图41-85(b)。点电荷+q与像电荷在P点的电势为 由球面上U=0,即r=a处。U=0,有 上式含有参量与,因而问题化成能否找到
29、两个参量和,使上式对于任意的都能满足。两边平方 要使此式对任意都成立,必须 得出和图41-85(b) 其中第一组解像电荷在球内,其对球外空间作用与感应电荷相同。第二组解像电荷就在q处,其对球内空间作用与感应电荷相同(第二组解并非其他书上所说的毫无意义,这一结果有很好的应用。虽然它看起来显而易见)。球外空间电势为 球内空间电势为零。讨论:若导体球绝缘,并且原来不带电,则当导体球放在点电荷q的电场中时,球将感应等量的正负电荷,球外空间的电场由点电荷q及球面上的感应正负电荷共同产生。这时感应电荷的贡献,除了负电荷根据上面的讨论可由球内Z轴上的象代替外,还应有一个感应正电荷的像,为了保持球面等势,这个
30、像的位置位于球心。那么 对于球面上任意一点 而,所以 从上式可以看出球面的电势相当于单独的一个点电荷q在球心的电势。实际上,由于球表面带电总量为零,这一点是显而易见的。如果q移到无限远,即,同时增大q,使在球心处的电场保持有限。这时,像电荷的无限趋近球心,但保持有限,因而像电荷和在球心形成一个电偶极子,其偶极矩为 。无限远的一个带无限多电量的点电荷在导体附近产生的电场可看作是均匀的。因此一个绝缘的金属球在匀强电场中受到感应后,它的感应电荷在球外空间的作用相当于一个处在球心,电偶极矩为的偶极子。15电荷q均匀分布在半球面ACB上,球面的半径为R,CD为通过半球顶点C与球心O的轴线,如图41-91。P、Q为CD轴线上在O点两侧,离O点距离相等的两点,已知P点的电势为Up,试求Q点的电势UQ。分析:本题关键是将其转化为空间对称情形,而后用电势叠加原理求解。解:设想一匀匀带电、带电量也是q的右半球,与题中所给的左半球组成一个完整的均匀带电球面,由对称性可知,右半球在P点的电势等于左半球在Q点的电势,即 (1)所以 (2)而正是两个半球同时存在时P点的电势。因为均匀带电球壳内部各处电势都相等,其值等于,k为静电力恒量,所以得 (3)由(2)、(3)两式得