1、5、线性规划数学模型具备哪几个要素? 答:(1).求一组决策变量xi或xij的值(i =1,2,m j=1,2n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数 第二章 线性规划的基本概念一、填空题1线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。2图解法适用于含有两个变量的线性规划问题。3线性规划问题的可行解是指满足所有约束条件的解。4在线性规划问题的基本解中,所有的非基变量等于零。5在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6若线性规划问题有最优解,则最优解一定可以在可
2、行域的顶点(极点)达到。7线性规划问题有可行解,则必有基可行解。8如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。9满足非负条件的基本解称为基本可行解。10在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。11将线性规划模型化成标准形式时,“”的约束条件要在不等式左_端加入松弛变量。12线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。13线性规划问题可分为目标函数求极大值和极小_值两类。14线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。15线性规划问题的基可行解
3、与可行域顶点的关系是顶点多于基可行解 16在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。 17求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。18.如果某个约束条件是“”情形,若化为标准形式,需要引入一松弛变量。19.如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj, 同时令XjXj Xj。20.表达线性规划的简式中目标函数为max(min)Z=cijxij。21.(2.1 P5)线性规划一般表达式中,aij表示该元素位置在i行j列。二、单选题1 如果一个线性规划问题有n个变量,m个约束方程(mn),系
4、数矩阵的数为m,则基可行解的个数最为_C_。Am个 Bn个 CCnm DCmn个2下列图形中阴影部分构成的集合是凸集的是 A 3线性规划模型不包括下列_ D要素。A目标函数 B约束条件 C决策变量 D状态变量4线性规划模型中增加一个约束条件,可行域的范围一般将_B_。A增大 B缩小 C不变 D不定5若针对实际问题建立的线性规划模型的解是无界的,不可能的原因是B_。A出现矛盾的条件 B缺乏必要的条件 C有多余的条件 D有相同的条件6在下列线性规划问题的基本解中,属于基可行解的是 D A(一1,0,O)T B(1,0,3,0)T C(一4,0,0,3)T D(0,一1,0,5)T7关于线性规划模型
5、的可行域,下面_B_的叙述正确。A可行域内必有无穷多个点B可行域必有界C可行域内必然包括原点D可行域必是凸的8下列关于可行解,基本解,基可行解的说法错误的是_D_.A可行解中包含基可行解 B可行解与基本解之间无交集C线性规划问题有可行解必有基可行解 D满足非负约束条件的基本解为基可行解 9.线性规划问题有可行解,则 A A 必有基可行解 B 必有唯一最优解 C 无基可行解 D无唯一最优解10.线性规划问题有可行解且凸多边形无界,这时 C A没有无界解 B 没有可行解 C 有无界解 D 有有限最优解11.若目标函数为求max,一个基可行解比另一个基可行解更好的标志是 A A使Z更大 B 使Z更小
6、 C 绝对值更大 D Z绝对值更小12.如果线性规划问题有可行解,那么该解必须满足 D A 所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求13.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在D集合中进行搜索即可得到最优解。A 基 B 基本解 C 基可行解 D 可行域14.线性规划问题是针对 D求极值问题.A约束 B决策变量 C 秩 D目标函数15如果第K个约束条件是“”情形,若化为标准形式,需要 B A左边增加一个变量 B右边增加一个变量 C左边减去一个变量D右边减去一个变量16.若某个bk0, 化为标准形式时原不等式 D A 不变 B 左端乘负1 C 右端乘
7、负1 D 两边乘负1 17.为化为标准形式而引入的松弛变量在目标函数中的系数应为 A A 0 B 1 C 2 D 312.若线性规划问题没有可行解,可行解集是空集,则此问题 B A 没有无穷多最优解 B 没有最优解 C 有无界解 D 有无界解三、多选题1 在线性规划问题的标准形式中,不可能存在的变量是D .A可控变量B松驰变量c剩余变量D人工变量 2下列选项中符合线性规划模型标准形式要求的有BCD A目标函数求极小值B右端常数非负C变量非负D约束条件为等式E约束条件为“”的不等式3某线性规划问题,n个变量,m个约束方程,系数矩阵的秩为m(m0对应的非基变量xk的系数列向量Pk_0_时,则此问题
8、是无界的。12在线性规划问题的典式中,基变量的系数列向量为单位列向量_13.对于求极小值而言,人工变量在目标函数中的系数应取-1 14.(单纯形法解基的形成来源共有三 种15.在大M法中,M表示充分大正数。二、单选题1线性规划问题C2在单纯形迭代中,出基变量在紧接着的下一次迭代中B立即进入基底。A会 B不会 C有可能 D不一定3在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中B。A不影响解的可行性B至少有一个基变量的值为负C找不到出基变量D找不到进基变量4用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部0,则说明本问题B 。A有惟一最优解 B
9、有多重最优解 C无界 D无解5线性规划问题maxZ=CX,AX=b,X0中,选定基B,变量Xk的系数列向量为Pk,则在关于基B的典式中,Xk的系数列向量为_ D ABPK BBTPK CPKB DB-1PK6下列说法错误的是B A 图解法与单纯形法从几何理解上是一致的 B在单纯形迭代中,进基变量可以任选C在单纯形迭代中,出基变量必须按最小比值法则选取 D人工变量离开基底后,不会再进基7.单纯形法当中,入基变量的确定应选择检验数 C A绝对值最大 B绝对值最小 C 正值最大 D 负值最小8.在单纯形表的终表中,若若非基变量的检验数有0,那么最优解 A A 不存在 B 唯一 C 无穷多 D 无穷大
10、9.若在单纯形法迭代中,有两个Q值相等,当分别取这两个不同的变量为入基变量时,获得的结果将是 C A 先优后劣 B 先劣后优 C 相同 D 会随目标函数而改变 10.若某个约束方程中含有系数列向量为单位向量的变量,则该约束方程不必再引入 C A 松弛变量 B 剩余变量 C 人工变量 D 自由变量11.在线性规划问题的典式中,基变量的系数列向量为 D A 单位阵 B非单位阵 C单位行向量 D单位列向量12.在约束方程中引入人工变量的目的是 D A 体现变量的多样性 B 变不等式为等式 C 使目标函数为最优 D 形成一个单位阵13.出基变量的含义是 D A 该变量取值不变 B该变量取值增大 C 由
11、0值上升为某值 D由某值下降为0 14.在我们所使用的教材中对单纯形目标函数的讨论都是针对 B 情况而言的。 A min B max C min + max D min ,max任选15.求目标函数为极大的线性规划问题时,若全部非基变量的检验数O,且基变量中有人工变量时该问题有 B A无界解 B无可行解 C 唯一最优解 D无穷多最优解三、多选题1 对取值无约束的变量xj。通常令xj=xj- x”j,其中xj0,xj”0,在用单纯形法求得的最优解中,可能出现的是ABC 2线性规划问题maxZ=x1+CX2 其中4c6,一1a3,10b12,则当_ BC时,该问题的最优目标函数值分别达到上界或下界
12、。 Ac=6 a=-1 b=10 Bc=6 a=-1 b=12 Cc=4 a=3 b=12 Dc=4 a=3 b=12 Ec=6 a=3 b=123设X(1),X(2)是用单纯形法求得的某一线性规划问题的最优解,则说明ACDE。A此问题有无穷多最优解 B该问题是退化问题 C此问题的全部最优解可表示为X(1)+(1一)X(2),其中01 DX(1),X(2)是两个基可行解EX(1),X(2)的基变量个数相同4某线性规划问题,含有n个变量,m个约束方程,(mn),系数矩阵的秩为m,则ABD 。A该问题的典式不超过CNM个B基可行解中的基变量的个数为m个C该问题一定存在可行解D该问题的基至多有CNM
13、=1个E该问题有111个基可行解5单纯形法中,在进行换基运算时,应ACDE。A先选取进基变量,再选取出基变量B先选出基变量,再选进基变量C进基变量的系数列向量应化为单位向量 D旋转变换时采用的矩阵的初等行变换E出基变量的选取是根据最小比值法则 6从一张单纯形表中可以看出的内容有ABCE。A一个基可行解B当前解是否为最优解C线性规划问题是否出现退化D线性规划问题的最优解E线性规划问题是否无界7.单纯形表迭代停止的条件为( AB )A 所有j均小于等于0 B 所有j均小于等于0且有aik0 C 所有aik0 D 所有bi0 8.下列解中可能成为最优解的有( ABCDE )A 基可行解 B 迭代一次
14、的改进解 C迭代两次的改进解 D迭代三次的改进解E 所有检验数均小于等于0且解中无人工变量9、若某线性规划问题有无穷多最优解,应满足的条件有( BCE )A PkPk0 B非基变量检验数为零 C基变量中没有人工变量 DjO E所有j010.下列解中可能成为最优解的有( ABCDE )A基可行解 B迭代一次的改进解 C迭代两次的改进解 D迭代三次的改进解E所有检验数均小于等于0且解中无人工变量四、名词、简答1、人造初始可行基:当我们无法从一个标准的线性规划问题中找到一个m阶单位矩阵时,通常在约束方程中引入人工变量,而在系数矩阵中凑成一个m阶单位矩阵,进而形成的一个初始可行基称为人造初始可行基。2
15、、单纯形法解题的基本思路? 可行域的一个基本可行解开始,转移到另一个基本可行解,并且使目标函数值逐步得到改善,直到最后球场最优解或判定原问题无解。五、分别用图解法和单纯形法求解下列线性规划问题并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。 八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“”,X3,X4为松驰变量表中解代入目标函数后得Z=10XlX2X3X410b-1fgX32CO115Xlade01(1)求表中ag的值 (2)
16、表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=5 (2) 表中给出的解为最优解 第四章 线性规划的对偶理论一、填空题 1线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的线性规划问题与之对应,反之亦然。2在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。3如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。4对偶问题的对偶问题是原问题_。5若原问题可行,但目标函数无界,则对偶问题不可行。6若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3
17、个单位时。相应的目标函数值将增加3k 。7线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB1。8若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX= Yb。9若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CXYb。10若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX=Y*b。 11设线性规划的原问题为maxZ=CX,Axb,X0,则其对偶问题为min=Yb YAcY0_。 12影子价格实际上是与原问题各约束条件相联系的对偶变量的数量表现。 13线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系数矩阵为AT 。 14在对偶
18、单纯形法迭代中,若某bi” D“=”2设、分别是标准形式的原问题与对偶问题的可行解,则 C 。 3对偶单纯形法的迭代是从_ A_开始的。A正则解 B最优解 C可行解 D基本解4如果z。是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值wA。AW=Z BWZ CWZ DWZ5如果某种资源的影子价格大于其市场价格,则说明_ BA该资源过剩B该资源稀缺 C企业应尽快处理该资源D企业应充分利用该资源,开僻新的生产途径三、多选题1在一对对偶问题中,可能存在的情况是ABC。A一个问题有可行解,另一个问题无可行解 B两个问题都有可行解C两个问题都无可行解 D一个问题无界,另一个问题可行2下
19、列说法错误的是B。A任何线性规划问题都有一个与之对应的对偶问题B对偶问题无可行解时,其原问题的目标函数无界。C若原问题为maxZ=CX,AXb,X0,则对偶问题为minW=Yb,YAC,Y0。D若原问题有可行解,但目标函数无界,其对偶问题无可行解。3如线性规划的原问题为求极大值型,则下列关于原问题与对偶问题的关系中正确的是BCDE。A原问题的约束条件“”,对应的对偶变量“0” B原问题的约束条件为“=”,对应的对偶变量为自由变量 C原问题的变量“0”,对应的对偶约束“” D原问题的变量“O”对应的对偶约束“”E原问题的变量无符号限制,对应的对偶约束“=”4一对互为对偶的问题存在最优解,则在其最
20、优点处有BD A若某个变量取值为0,则对应的对偶约束为严格的不等式B若某个变量取值为正,则相应的对偶约束必为等式C若某个约束为等式,则相应的对偶变取值为正D若某个约束为严格的不等式,则相应的对偶变量取值为0 E若某个约束为等式,则相应的对偶变量取值为05下列有关对偶单纯形法的说法正确的是ABCD。 A在迭代过程中应先选出基变量,再选进基变量B当迭代中得到的解满足原始可行性条件时,即得到最优解 C初始单纯形表中填列的是一个正则解D初始解不需要满足可行性 E初始解必须是可行的。6根据对偶理论,在求解线性规划的原问题时,可以得到以下结论ACD。A 对偶问题的解B市场上的稀缺情况 C影子价格D资源的购
21、销决策E资源的市场价格7在下列线性规划问题中,CE采用求其对偶问题的方法,单纯形迭代的步骤一般会减少。四、名词、简答题1、对偶可行基:凡满足条件=C-CBB-1A0的基B称为对偶可行基。2、.对称的对偶问题:设原始线性规划问题为maxZ=CX s.t AXb X 0称线性规划问题minW=Yb s.t YAC Y0 为其对偶问题。又称它们为一对对称的对偶问题。 3、影子价格:对偶变量Yi表示与原问题的第i个约束条件相对应的资源的影子价格,在数量上表现为,当该约束条件的右端常数增加一个单位时(假设原问题的最优解不变),原问题目标函数最优值增加的数量。 4影子价格在经济管理中的作用。(1)指出企业
22、内部挖潜的方向;(2)为资源的购销决策提供依据;(3)分析现有产品价格变动时资源紧缺情况的影响;(4)分析资源节约所带来的收益;(5)决定某项新产品是否应投产。5线性规划对偶问题可以采用哪些方法求解?(1)用单纯形法解对偶问题;(2)由原问题的最优单纯形表得到;(3)由原问题的最优解利用互补松弛定理求得;(4)由Y*=CBB-1求得,其中B为原问题的最优基6、一对对偶问题可能出现的情形:1.原问题和对偶问题都有最优解,且二者相等;2.一个问题具有无界解,则另一个问题具有无可行解;3.原问题和对偶问题都无可行解。五、写出下列线性规划问题的对偶问题1minZ=2x1+2x2+4x3 六、已知线性规
23、划问题 应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题 maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Yl=4,Y2=1,试应用对偶问题的性质求原问题的最优解。七、用对偶单纯形法求解下列线性规划问题: 八、已知线性规划问题 (1) 写出其对偶问题 (2)已知原问题最优解为X=(2,2,4,0)T,试根据对偶理论,直接求出对偶问题的最优解。 W* = 16第五章 线性规划的灵敏度分析一、填空题1、灵敏度分析研究的是线性规划模型的原始、最优解数据变化对产生的影响。2、在线性规划的灵敏度分析中,我们主要用到的性质是_可行性,正则性。3在灵敏度分析中,某个非基变量的
24、目标系数的改变,将引起该非基变量自身的检验数的变化。4如果某基变量的目标系数的变化范围超过其灵敏度分析容许的变化范围,则此基变量应出基。5约束常数b;的变化,不会引起解的正则性的变化。6在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生b1的变化,则新的最优解对应的最优目标函数值是Z*+yib (设原最优目标函数值为Z)7若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用对偶单纯形法求解。8已知线性规划问题,最优基为B,目标系数为CB,若新增变量xt,目标系数为ct,系数列向量为Pt,则当CtCBB1Pt时,x
25、t不能进入基底。9如果线性规划的原问题增加一个约束条件,相当于其对偶问题增加一个变量。10、若某线性规划问题增加一个新的约束条件,在其最优单纯形表中将表现为增加一行,一列。11线性规划灵敏度分析应在最优单纯形表的基础上,分析系数变化对最优解产生的影响12在某生产规划问题的线性规划模型中,变量xj的目标系数Cj代表该变量所对应的产品的利润,则当某一非基变量的目标系数发生增大变化时,其有可能进入基底。二、单选题1若线性规划问题最优基中某个基变量的目标系数发生变化,则C。A该基变量的检验数发生变化B其他基变量的检验数发生变化C所有非基变量的检验数发生变化D所有变量的检验数都发生变化2线性规划灵敏度分
26、析的主要功能是分析线性规划参数变化对D的影响。A正则性B可行性C可行解D最优解3在线性规划的各项敏感性分析中,一定会引起最优目标函数值发生变化的是B。A目标系数cj的变化B约束常数项bi变化C增加新的变量 D增加新约束4在线性规划问题的各种灵敏度分析中,B_的变化不能引起最优解的正则性变化。A目标系数B约束常数C技术系数D增加新的变量E增加新的约束条件5对于标准型的线性规划问题,下列说法错误的是C A在新增变量的灵敏度分析中,若新变量可以进入基底,则目标函数将会得到进一步改善。B在增加新约束条件的灵敏度分析中,新的最优目标函数值不可能增加。C当某个约束常数bk增加时,目标函数值一定增加。D某基
27、变量的目标系数增大,目标函数值将得到改善6.灵敏度分析研究的是线性规划模型中最优解和 C 之间的变化和影响。A 基 B 松弛变量 C原始数据 D 条件系数三、多选题1如果线性规划中的cj、bi同时发生变化,可能对原最优解产生的影响是_ ABCD.A正则性不满足,可行性满足B正则性满足,可行性不满足C正则性与可行性都满足D正则性与可行性都不满足E可行性和正则性中只可能有一个受影响2在灵敏度分析中,我们可以直接从最优单纯形表中获得的有效信息有ABCE。A最优基B的逆B-1 B最优解与最优目标函数值C各变量的检验数D对偶问题的解E各列向量3线性规划问题的各项系数发生变化,下列不能引起最优解的可行性变
28、化的是ABC_。A非基变量的目标系数变化 B基变量的目标系数变化C增加新的变量D,增加新的约束条件4下列说法错误的是ACD A若最优解的可行性满足B-1 b0,则最优解不发生变化B目标系数cj发生变化时,解的正则性将受到影响C某个变量xj的目标系数cj发生变化,只会影响到该变量的检验数的变化D某个变量xj的目标系数cj发生变化,会影响到所有变量的检验数发生变化。四、名词、简答题1.灵敏度分析:研究线性规划模型的原始数据变化对最优解产生的影响2线性规划问题灵敏度分析的意义。(1)预先确定保持现有生产规划条件下,单位产品利润的可变范围;(2)当资源限制量发生变化时,确定新的生产方案;(3)确定某种
29、新产品的投产在经济上是否有利;(4)考察建模时忽略的约束对问题的影响程度;(5)当产品的设计工艺改变时,原最优方案是否需要调整。四、某工厂在计划期内要安排生产I、两种产品。已知生产单位产品所需的设备台时及A、B两种原料的消耗如表所示:I设备原材料A原材料B1402048台时16kg12kg 该工厂每生产一件产品I可获利2百元,每生产一件产品可获利3百元。 (1)单纯形迭代的初始表及最终表分别如下表I、所示:x1 x2 x3 x4 x5xB-Z 0 2 3 O 0 0 X3 X4 X5 8 16 12 1 2 1 O 0 4 0 0 1 0 0 4 0 0 1 14 0 0 -3/2 -1/8
30、0 XlX5X2 442 1 0 0 1/4 00 0 -2 1/2 10 1 1/2 -1/8 0 说明使工厂获利最多的产品混合生产方案。 (2)如该厂从别处抽出4台时的设备用于生产I、,求这时该厂生产产品I、的最优方案。 (3)确定原最优解不变条件下,产品的单位利润可变范围。 (4)该厂预备引进一种新产品,已知生产每件产品,需消耗原材料A、B分别为6kg,3kg使用设备2台时,可获利5百元,问该厂是否应生产该产品及生产多少?(1)使工厂获利最多的产品混合生产方案:生产I产品4件,生产II产品2件,设备台时与原材料A全部用完,原材料B剩余4kg,此时,获利14百元。 (2)X*=(4,3,2
31、,0,o)Tz*=17 (3)0C24 (4)应生产产品,产量为2。 五、给出线性规划问题 用单纯形表求解得单纯形表如下,试分析下列各种条件变化下最优解(基)的变化:xl x2 x3 x4 x5xB-Z -8 0 0 -3 -5 -1 xl x2 1 2 1 0 -1 4 -1 0 1 2 -1 1 (1)分别确定目标函数中变量X1和X2的系数C1,c2在什么范围内变动时最优解不变; (2)目标函数中变量X3的系数变为6; (3)增添新的约束X1+2x2+x34 解:(1)3/4C13 2C28 (2)X*=(2,0,1,0,0,0)T Z*=10 (3)X*=(2,1,0,0,1,0)T Z
32、*=7 (4)X*=(0,2,0,0,0,1/3)T Z*=25/3 第六章 物资调运规划运输问题一、填空题1 物资调运问题中,有m个供应地,Al,A2,Am,Aj的供应量为ai(i=1,2,m),n个需求地B1,B2,Bn,B的需求量为bj(j=1,2,n),则供需平衡条件为 =2物资调运方案的最优性判别准则是:当全部检验数非负时,当前的方案一定是最优方案。3可以作为表上作业法的初始调运方案的填有数字的方格数应为m+n1个(设问题中含有m个供应地和n个需求地)4若调运方案中的某一空格的检验数为1,则在该空格的闭回路上调整单位运置而使运费增加1。5调运方案的调整是要在检验数出现负值的点为顶点所
33、对应的闭回路内进行运量的调整。6按照表上作业法给出的初始调运方案,从每一空格出发可以找到且仅能找到_1条闭回路7在运输问题中,单位运价为Cij位势分别用ui,Vj表示,则在基变量处有cij Cij=ui+Vj 。8、供大于求的、供不应求的不平衡运输问题,分别是指_的运输问题、_的运输问题。10在表上作业法所得到的调运方案中,从某空格出发的闭回路的转角点所对应的变量必为基变量。 11在某运输问题的调运方案中,点(2,2)的检验数为负值,(调运方案为表所示)则相应的调整量应为300_。IA300100300B400C60030012.若某运输问题初始方案的检验数中只有一个负值:2,则这个2的含义是该检验数所在格单位调整量。13.运输问题的初始方案中的基变量取值为正。14表上作业法中,每一次调整1个“入基变量”。 15.在编制初始方案调运方案及调整中,如出现退化,则某一个或多个点处应填入数字016运输问题的模型中,含有的方程个数为n+M个。17表上作业