导数的概念及运算(基础+复习+习题+练习)精编版(DOC 7页).doc

上传人(卖家):2023DOC 文档编号:5642501 上传时间:2023-04-28 格式:DOC 页数:7 大小:305.50KB
下载 相关 举报
导数的概念及运算(基础+复习+习题+练习)精编版(DOC 7页).doc_第1页
第1页 / 共7页
导数的概念及运算(基础+复习+习题+练习)精编版(DOC 7页).doc_第2页
第2页 / 共7页
导数的概念及运算(基础+复习+习题+练习)精编版(DOC 7页).doc_第3页
第3页 / 共7页
导数的概念及运算(基础+复习+习题+练习)精编版(DOC 7页).doc_第4页
第4页 / 共7页
导数的概念及运算(基础+复习+习题+练习)精编版(DOC 7页).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、最新资料推荐导数的概念及运算一,导数的概念设函数在处附近有定义,当自变量在处有增量时,则函数相应地有增量,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即在定义式中,设,则,当趋近于时,趋近于,因此,导数的定义式可写成.求函数的导数的一般步骤:求函数的改变量求平均变化率;取极限,得导数 导数的几何意义:导数是函数在点处的瞬时变化率,它反映的函数在点处变化的快慢程度. 它的几何意义是曲线上点()处的切线的斜率.因此,如果在点可导,则曲线在点()处的切线方程为 导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着

2、一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数,也可记作,即函数在处的导数就是函数在开区间上导数在处的函数值,即.所以函数在处的导数也记作1用导数的定义求下列函数的导数: ; 2已知,求若,则 二,导数的四则计算常用的导数公式及求导法则:(1)公式,(C是常数) (2)法则:, 2,复合函数的求导法则:复合函数的导数和函数,的导数间的关系为.题型1, 导数的四则计算1,求下列函数的导数: 2,求导数(1) (2) (3) (4) (5) 三,复合函数的导数链式法则若y= f (u),u= y= f ,则=若y= f (u),u=,v= y= f ,则 =

3、说明:复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。1,函数的导数.2,求的导数3,求下列函数的导数 4,求下列函数的导数(1)y=cos x (2)y=ln (x+)5 ,设 求 .跟踪练习:求下函数的导数.6,(1) (2)7,(1)y=(5x3)4 (2)y=(2+3x)5 (3)y=(2x2)3 (4)y=(2x3+x)28,(1)y= (2)y= (3)y=sin(3x) (4)y=cos(1+x2)9,; ; 10,求下列函数的导数 (1) y =sinx3+sin33x; (2) (3) 7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(导数的概念及运算(基础+复习+习题+练习)精编版(DOC 7页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|