1、第一章质点运动学主要内容一. 描述运动的物理量1. 位矢、位移和路程由坐标原点到质点所在位置的矢量称为位矢位矢,大小 运动方程 运动方程的分量形式位移是描述质点的位置变化的物理量t时间内由起点指向终点的矢量,路程是t时间内质点运动轨迹长度是标量。明确、的含义()2. 速度(描述物体运动快慢和方向的物理量)平均速度 瞬时速度(速度) (速度方向是曲线切线方向),速度的大小称速率。3. 加速度(是描述速度变化快慢的物理量)平均加速度瞬时加速度(加速度) 方向指向曲线凹向二.抛体运动运动方程矢量式为 分量式为 三.圆周运动(包括一般曲线运动)1.线量:线位移、线速度切向加速度(速率随时间变化率)法向
2、加速度(速度方向随时间变化率)。2.角量:角位移(单位)、角速度(单位)角速度(单位)3.线量与角量关系:4.匀变速率圆周运动:(1) 线量关系 (2) 角量关系 第二章牛顿运动定律主要内容一、牛顿第二定律物体动量随时间的变化率等于作用于物体的合外力即:, 时 说明:(1)只适用质点;(2) 为合力 ;(3) 是瞬时关系和矢量关系; (4) 解题时常用牛顿定律分量式(平面直角坐标系中) (一般物体作直线运动情况)(自然坐标系中) (物体作曲线运动)运用牛顿定律解题的基本方法可归纳为四个步骤运用牛顿解题的步骤:1)弄清条件、明确问题(弄清已知条件、明确所求的问题及研究对象)2)隔离物体、受力分析
3、(对研究物体的单独画一简图,进行受力分析)3)建立坐标,列运动方程(一般列分量式);4) 文字运算、代入数据举例:如图所示,把质量为的小球挂在倾角的光滑斜面上,求(1) 当斜面以的加速度水平向右运动时,(2) 绳中张力和小球对斜面的正压力。解:1) 研究对象小球2)隔离小球、小球受力分析3)建立坐标,列运动方程(一般列分量式); (1) (2)4) 文字运算、代入数据 () (3) (4)(2)由运动方程,情况 第三章动量守恒和能量守恒定律主要内容一. 动量定理和动量守恒定理1. 冲量和动量称为在时间内,力对质点的冲量。质量与速度乘积称动量 2. 质点的动量定理:质点的动量定理的分量式: 3.
4、 质点系的动量定理:质点系的动量定理分量式动量定理微分形式,在时间内:4. 动量守恒定理:当系统所受合外力为零时,系统的总动量将保持不变,称为动量守恒定律 动量守恒定律分量式: 二.功和功率、保守力的功、势能1.功和功率:质点从点运动到点变力所做功恒力的功:功率:2.保守力的功物体沿任意路径运动一周时,保守力对它作的功为零3.势能保守力功等于势能增量的负值,物体在空间某点位置的势能三.动能定理、功能原理、机械能守恒守恒1. 动能定理质点动能定理:质点系动能定理:作用于系统一切外力做功与一切内力作功之和等于系统动能的增量2.功能原理:外力功与非保守内力功之和等于系统机械能(动能+势能)的增量机械
5、能守恒定律:只有保守内力作功的情况下,质点系的机械能保持不变 真 空 中 的 静 电 场知识点:1. 场强(1) 电场强度的定义 (2) 场强叠加原理 (矢量叠加)(3) 点电荷的场强公式 (4) 用叠加法求电荷系的电场强度 2. 高斯定理 真空中 电介质中 3. 电势(1) 电势的定义 对有限大小的带电体,取无穷远处为零势点,则 (2) 电势差 (3) 电势叠加原理 (标量叠加)(4) 点电荷的电势 (取无穷远处为零势点) 电荷连续分布的带电体的电势 (取无穷远处为零势点)4. 电荷q在外电场中的电势能 5. 移动电荷时电场力的功 6. 场强与电势的关系 静 电 场 中 的 导 体知识点:1
6、.导体的静电平衡条件(1) (2) 2. 静电平衡导体上的电荷分布 导体内部处处静电荷为零.电荷只能分布在导体的表面上.3. 电容定义 平行板电容器的电容 电容器的并联 (各电容器上电压相等) 电容器的串联 (各电容器上电量相等)4. 电容器的能量 电场能量密度 5、电动势的定义 式中为非静电性电场.电动势是标量,其流向由低电势指向高电势。 静 电 场 中 的 电 介 质知识点:1. 电介质中的高斯定理2. 介质中的静电场 3. 电位移矢量真 空 中 的 稳 恒 磁 场知识点:1. 毕奥-萨伐定律 电流元产生的磁场 式中, 表示稳恒电流的一个电流元(线元),r表示从电流元到场点的距离, 表示从
7、电流元指向场点的单位矢量.2. 磁场叠加原理 在若干个电流(或电流元)产生的磁场中,某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和. 即 3. 要记住的几种典型电流的磁场分布(1)有限长细直线电流 式中,a为场点到载流直线的垂直距离, 、为电流入、出端电流元矢量与它们到场点的矢径间的夹角.a) 无限长细直线电流 b) 通电流的圆环 圆环中心 (4) 通电流的无限长均匀密绕螺线管内 4. 安培环路定律真空中 磁介质中 当电流I的方向与回路l的方向符合右手螺旋关系时, I为正,否则为负.5. 磁力(1) 洛仑兹力 质量为m、带电为q的粒子以速度沿垂直于均匀磁场方向
8、进入磁场,粒子作圆周运动,其半径为 周期为 (2) 安培力 (3) 载流线圈的磁矩 载流线圈受到的磁力矩 (4) 霍尔效应 霍尔电压 电 磁 感 应 电 磁 场知识点:1. 楞次定律:感应电流产生的通过回路的磁通量总是反抗引起感应电流的磁通量的改变.2. 法拉第电磁感应定律 3. 动生电动势: 导体在稳恒磁场中运动时产生的感应电动势. 或 4. 感应电场与感生电动势: 由于磁场随时间变化而引起的电场成为感应电场. 它产生电动势为感生电动势. 局限在无限长圆柱形空间内, 沿轴线方向的均运磁场随时间均匀变化时, 圆柱内外的感应电场分别为 5. 自感和互感自感系数 自感电动势 自感磁能 互感系数 互
9、感电动势 6. 磁场的能量密度7. 位移电流 此假说的中心思想是: 变化着的电场也能激发磁场. 通过某曲面的位移电流强度等于该曲面电位移通量的时间变化率. 即 位移电流密度 8. 麦克斯韦方程组的积分形式 第五章机械振动主要内容一. 简谐运动振动:描述物质运动状态的物理量在某一数值附近作周期性变化。机械振动:物体在某一位置附近作周期性的往复运动。简谐运动动力学特征:简谐运动运动学特征:简谐运动方程:简谐振动物体的速度:加速度速度的最大值,加速度的最大值二. 描述谐振动的三个特征物理量1. 振幅:,取决于振动系统的能量。2. 角(圆)频率:,取决于振动系统的性质对于弹簧振子 、对于单摆3. 相位
10、,它决定了振动系统的运动状态()的相位初相所在象限由:,在第一象限,即取(),在第二象限,即取(),在第三象限,即取(),在第四象限,即取()三. 旋转矢量法简谐运动可以用一旋转矢量(长度等于振幅)的矢端在轴上的投影点运动来描述。1.的模=振幅,2. 角速度大小=谐振动角频率3.的角位置是初相4.时刻旋转矢量与轴角度是时刻振动相位5.矢端的速度和加速度在轴上的投影点速度和加速度是谐振动的速度和加速度。四.简谐振动的能量以弹簧振子为例:五.同方向同频率的谐振动的合成设合成振动振幅与两分振动振幅关系为:合振动的振幅与两个分振动的振幅以及它们之间的相位差有关。一般情况,相位差可以取任意值第六章机械波
11、主要内容一.波动的基本概念1.机械波:机械振动在弹性介质中的传播。2. 波线沿波传播方向的有向线段。波面振动相位相同的点所构成的曲面3.波的周期:与质点的振动周期相同。4. 波长:振动的相位在一个周期内传播的距离。5. 波速u:振动相位传播的速度。波速与介质的性质有关二. 简谐波沿轴正方向传播的平面简谐波的波动方程质点的振动速度质点的振动加速度这是沿轴负方向传播的平面简谐波的波动方程。三.波的干涉两列波频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象。两列相干波加强和减弱的条件:(1) 时,(振幅最大,即振动加强) 时,(振
12、幅最小,即振动减弱)(2)若(波源初相相同)时,取称为波程差。 时,(振动加强) 时,(振动减弱); 其他情况合振幅的数值在最大值和最小值之间。第七章气体动理论主要内容一.理想气体状态方程:;二. 理想气体压强公式分子平均平动动能三. 理想气体温度公式四.能均分原理1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。2. 气体分子的自由度单原子分子 (如氦、氖分子);刚性双原子分子;刚性多原子分子3. 能均分原理:在温度为的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为4.一个分子的平均动能为:五. 理想气体的内能(所有分子热运动动能之和)1. 理想气体3. 一定量理想气体第
13、八章热力学基础主要内容一.准静态过程(平衡过程)系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态过程。二.热力学第一定律;1.气体2.符号规定3.三.热力学第一定律在理想气体的等值过程和绝热过程中的应用1. 等体过程2. 等压过程3.等温过程4. 绝热过程绝热方程, , 。 四.循环过程特点:系统经历一个循环后,系统经历一个循环后1. 正循环(顺时针)-热机逆循环(逆时针)-致冷机2. 热机效率:式中:-在一个循环中,系统从高温热源吸收的热量和;-在一个循环中,系统向低温热源放出的热量和;-在一个循环中,系统对外做的功(代数和)。3. 卡诺热机效率: 式中:-高温热源温度;-低温热源温度;4. 制冷机的制冷系数: 卡诺制冷机的制冷系数:五. 热力学第二定律1. 开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效率为是不可能的)。2. 克劳修斯表述:热量不能自动地从低温物体传到高温物体。两种表述是等价的.16