1、一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。4.三角形的内角和定理,能用平行线的性质推出这一定理。5.能应用三角形内角和定理解决一些简单的实际问题。二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。四、知识框架 五、知识点、概念总结1.三角形:由不在同
2、一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。7.高线、中线、角平分线的意义和做法三角形的重要线段意义图形表示法三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段1.AD是ABC的BC上的高线.2.ADBC
3、于D.3.ADB=ADC=90.三角形的中线三角形中,连结一个顶点和它对边中的线段1.AE是ABC的BC上的中线.2.BE=EC=BC.三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段1.AM是ABC的BAC的平分线.2.1=2=BAC.8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。9. 三角形内角和定理:三角形三个内角的和等于180 推论1 直角三角形的两个锐角互余 ;推论2 三角形的一个外角等于和它不相邻的两个内角和 ;推论3 三角形的一个外角大于任何一个和它不相邻的内角 ;三角形的内角和是外角和的一半。10. 三角形的外角:三
4、角形的一条边与另一条边延长线的夹角,叫做三角形的外角。11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线 ;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360。12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。13.多边形的内角:多边形相邻两边组成的角叫做它的内角。14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。16.多边形的分类:分为凸多边形及凹多
5、边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。19.公式与性质多边形内角和公式:n边形的内角和等于(n-2)18020.多边形外角和定理: (1)n边形外角和等于n180(n2)180=360 (2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n18021.多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。(2)n边形共有条对角线。