1、 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中向量知识点归纳向量一、平面向量的概念及线性运算1向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法
2、求两个向量和的运算(1)交换律:abba. (2)结合律:(ab)ca(bc)减法求a与b的相反向量b的和的运算叫做a与b的差三角形法则aba(b)数乘求实数与向量a的积的运算(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0(a)()a;()aaa;(ab)ab3.共线向量定理向量a(a0)与b共线的充要条件是存在唯一一个实数,使得ba.二、平面向量基本定理及坐标表示1平面向量基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1、2,使a1e12e2.其中,不共线的向量e1、e2叫做表示这一平
3、面内所有向量的一组基底2平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x1,y1),|a|.(2)向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标设A(x1,y1),B(x2,y2),则(x2x1,y2y1),|.3平面向量共线的坐标表示设a(x1,y1),b(x2,y2),abx1y2x2y10.三、平面向量的数量积1平面向量的数量积已知两个非零向量a和b,它们的夹角为,则数量|a|b|cos 叫做a和b的数量积(或内积),记作ab|a|b|cos .规定:零向量与任一向
4、量的数量积为_0_.两个非零向量a与b垂直的充要条件是ab0,两个非零向量a与b平行的充要条件是ab|a|b|.2平面向量数量积的几何意义数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积3平面向量数量积的重要性质(1)eaae|a|cos ;(2)非零向量a,b,abab0;(3)当a与b同向时,ab|a|b|;当a与b反向时,ab|a|b|,aaa2,|a|;(4)cos ;(5)|ab|_|a|b|.4平面向量数量积满足的运算律(1)abba(交换律);(2)(a)b(ab)a(b)(为实数);(3)(ab)cacbc.5平面向量数量积有关性质的坐标表示设向量a(x1,y1),b(x2,y2),则abx1x2y1y2,由此得到(1)若a(x,y),则|a|2x2y2或|a|.(2)设A(x1,y1),B(x2,y2),则A、B两点间的距离|AB|.(3)设两个非零向量a,b,a(x1,y1),b(x2,y2),则abx1x2y1y20.3