二次函数中考大题总结及答案详解.doc

上传人(卖家):2023DOC 文档编号:5697035 上传时间:2023-05-04 格式:DOC 页数:73 大小:1.46MB
下载 相关 举报
二次函数中考大题总结及答案详解.doc_第1页
第1页 / 共73页
二次函数中考大题总结及答案详解.doc_第2页
第2页 / 共73页
二次函数中考大题总结及答案详解.doc_第3页
第3页 / 共73页
二次函数中考大题总结及答案详解.doc_第4页
第4页 / 共73页
二次函数中考大题总结及答案详解.doc_第5页
第5页 / 共73页
点击查看更多>>
资源描述

1、一、解答题(共30小题)1(2012凉山州)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD轴于D,交AB于点E当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由2(2012连云港)如图,抛物线y=x2+bx+c与

2、x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求ABD的面积;(3)将AOC绕点C逆时针旋转90,点A对应点为点G,问点G是否在该抛物线上?请说明理由3(2012丽水)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OBOA,交抛物线于点B,以OA、OB为边构造矩形AOBC(1)如图1,当点A的横坐标为_时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,求点B的坐标;将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=x2

3、,试判断抛物线y=x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由4(2012乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C已知实数m、n(mn)分别是方程x22x3=0的两根(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD当OPC为等腰三角形时,求点P的坐标;求BOD 面积的最大值,并写出此时点D的坐标5(2012兰州)若x1、x2是关于一元二次方程ax

4、2+bx+c(a0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=,x1x2=把它称为一元二次方程根与系数关系定理如果设二次函数y=ax2+bx+c(a0)的图象与x轴的两个交点为A(x1,0),B(x2,0)利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1x2|=;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然ABC为等腰三角形(1)当ABC为直角三角形时,求b24ac的值;(2)当ABC为等边三角形时,求b24ac的值6(2012兰州)如图,R

5、tABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上(1)求抛物线对应的函数关系式;(2)若把ABO沿x轴向右平移得到DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作BD交x轴于点N,连接PM、PN,设OM的长为t,P

6、MN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由7(2012荆门)已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2=4x1x2求k的值;当kxk+2时,请结合函数图象确定y的最大值和最大值8(2012荆门)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE已知tanCBE=,A(3,0),D(1

7、,0),E(0,3)(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设AOE沿x轴正方向平移t个单位长度(0t3)时,AOE与ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围9(2012江西)如图,已知二次函数L1:y=x24x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(1)写出A、B两点的坐标;(2)二次函数L2:y=kx24kx+3k(k0),顶点为P直接写出二次函数L2与二次函数L1有关图

8、象的两条相同的性质;是否存在实数k,使ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由10(2012嘉兴)某汽车租赁公司拥有20辆汽车据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元设公司每日租出工辆车时,日收益为y元(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为_元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最

9、大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?11(2012嘉兴)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内)连接 OP,过点0作OP的垂线交抛物线于另一点Q连接PQ,交y轴于点M作PA丄x轴于点A,QB丄x轴于点B设点P的横坐标为m(1)如图1,当m=时,求线段OP的长和tanPOM的值;在y轴上找一点C,使OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E用含m的代数式表示点Q的坐标;求证:四边形ODME是矩形12(2012佳木斯)如图,抛物线y=x2+bx+c经过坐标原点,并与

10、x轴交于点A(2,0)(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且SOAB=3,求点B的坐标13(2012济宁)如图,抛物线y=ax2+bx4与x轴交于A(4,0)、B(2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PDAC,交BC于点D,连接CP(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BDBC;(3)当PCD的面积最大时,求点P的坐标14(2012吉林)问题情境如图,在x轴上有两点A(m,0),B(n,0)(nm0)分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D直线OC交直线BD于点E,直线O

11、D交直线AC于点F,点E、点F的纵坐标分别记为yE,yF特例探究填空:当m=1,n=2时,yE=_,yF=_;当m=3,n=5时,yE=_,yF=_归纳证明对任意m,n(nm0),猜想yE与yF的大小关系,并证明你的猜想拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a0)”,其他条件不变,请直接写出yE与yF的大小关系;(2)连接EF,AE当S四边形OFEA=3SOFE时,直接写出m与n的关系及四边形OFEA的形状15(2012鸡西)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3(1)求抛物线的解析式(2)若点D(2,2)是抛物线上一点,

12、那么在抛物线的对称轴上,是否存在一点P,使得BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由注:二次函数y=ax2+bx+c(a0)的对称轴是直线x=16(2012黄石)已知抛物线C1的函数解析式为y=ax2+bx3a(b0),若抛物线C1经过点(0,3),方程ax2+bx3a=0的两根为x1,x2,且|x1x2|=4(1)求抛物线C1的顶点坐标(2)已知实数x0,请证明x+2,并说明x为何值时才会有x+=2(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:AOB=90,m0,n0请你用含m的表

13、达式表示出AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为)17(2012黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购

14、买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)18(2012黄冈)如图,已知抛物线的方程C1:y=(x+2)(xm)(m0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求BCE的面积;(3)在(1)条件下,在抛物线的

15、对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与BCE相似?若存在,求m的值;若不存在,请说明理由19(2012怀化)如图,抛物线m:y=(x+h)2+k与x轴的交点为A、B,与y轴的交点为C,顶点为M(3,),将抛物线m绕点B旋转180,得到新的抛物线n,它的顶点为D;(1)求抛物线n的解析式;(2)设抛物线n与x轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF如果P点的坐标为(x,y),PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,

16、并求出S的最大值;(3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,A、B两点间的距离为直径作G,试判断直线CM与G的位置关系,并说明理由20(2012湖州)如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点点D的坐标为(,3),抛物线y=ax2+b(a0)经过AB、CD两边的中点(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BECD于点E,交抛物线于点F,连接DF、AF设菱形ABCD平移的时间为t秒(0t)是否存在这样的t,使ADF与DEF相似?若存在,求出t的值;若不存在,请说明理由;连接FC,以

17、点F为旋转中心,将FEC按顺时针方向旋转180,得FEC,当FEC落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围(写出答案即可)21(2012呼和浩特)如图,抛物线y=ax2+bx+c(a0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(2,2),点B在第四象限内,过点B作直线BCx轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E(1)求双曲线和抛物线的解析式;(2)计算ABC与ABE的面积;(3)在抛物线上是否存在点D,使ABD的面积等于ABE的面积的8倍?若存在,请求出点D的坐标;若不存在

18、,请说明理由22(2012衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动(点P异于点O)(1)求此抛物线的解析式(2)过点P作CB所在直线的垂线,垂足为点R,求证:PF=PR;是否存在点P,使得PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断RSF的形状23(2012黑龙江)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0)(1)求此抛物线的解析式;

19、(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且SOAB=8,求点B的坐标24(2012菏泽)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销经过调查,得到如下数据:销售单价x(元/件)2030405060每天销售量(y件)500400300200100(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?25(2012菏泽)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(

20、0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90,得到ABO(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PBAB的面积是ABO面积4倍?若存在,请求出P的坐标;若不存在,请说明理由(3)在(2)的条件下,试指出四边形PBAB是哪种形状的四边形?并写出四边形PBAB的两条性质26(2012河南)如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx3交于A、B两点,点A在x轴上,点B的纵坐标为3点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD

21、AB于点D(1)求a、b及sinACP的值;(2)设点P的横坐标为m用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;连接PB,线段PC把PDB分成两个三角形,是否存在适合的m的值,直接写出m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由27(2012河北)某工厂生产一种合金薄板(其厚度忽略不计),这写薄板的形状均为正方向,边长在(单位:cm)在550之间每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的浮动价与薄板的边长成正比例在营销过

22、程中得到了表格中的数据薄板的边长(cm)2030出厂价(元/张)5070(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价成本价),求一张薄板的利润与边长之间满足的函数关系式当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?参考公式:抛物线:y=ax2+bx+c(a0)的顶点坐标为(,)28(2012杭州)当k分别取1,1,2时,函数y=(k1)x24x+5k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值29(2012杭州)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x1)的图象交于点A(1,k)和点B(1,k)(1)当k=2时,求反比

23、例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值30(2012海南)如图,顶点为P(4,4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:证明:ANM=ONM;ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由答案与评分标准一解答题(共30小题)1(2012凉山州)如

24、图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD轴于D,交AB于点E当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由考点:二次函数综合题。分析:(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求

25、出抛物线与x轴另一交点C的坐标;(2)关键是求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值;(3)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标注意“MON是等腰三角形”,其中包含三种情况,需要逐一讨论,不能漏解解答:解:(1)直线y=x+4与x轴、y轴分别交于A、B两点,A(4,0),B(0,4)抛物线y=x2+bx+c经过A、B两点,可得,解得,抛物线解析式为y=x23x+4令y=0,得x23x+4=0,解得x1=4,x

26、2=1,C(1,0)(2)如答图1所示,设D(t,0)OA=OB,BAO=45,E(t,t),P(t,t23t+4)PE=yPyE=t23t+4t=t24t=(t+2)2+4,当t=2时,线段PE的长度有最大值4,此时P(2,6)(3)存在如答图2所示,过N点作NHx轴于点H设OH=m(m0),OA=OB,BAO=45,NH=AH=4m,yQ=4m又M为OA中点,MH=2mMON为等腰三角形:若MN=ON,则H为底边OM的中点,m=1,yQ=4m=3由xQ23xQ+4=3,解得xQ=,点Q坐标为(,3)或(,3);若MN=OM=2,则在RtMNH中,根据勾股定理得:MN2=NH2+MH2,即2

27、2=(4m)2+(2m)2,化简得m26m+8=0,解得:m1=2,m2=4(不合题意,舍去)yQ=2,由xQ23xQ+4=2,解得xQ=,点Q坐标为(,2)或(,2);若ON=OM=2,则在RtNOH中,根据勾股定理得:ON2=NH2+OH2,即22=(4m)2+m2,化简得m24m+6=0,=80,此时不存在这样的直线l,使得MON为等腰三角形综上所述,存在这样的直线l,使得MON为等腰三角形所求Q点的坐标为(,3)或(,3)或(,2)或(,2)点评:本题综合考查了二次函数的图象与性质、待定系数法、一次函数、一元二次方程的解法及判别式、等腰三角形以及勾股定理等方面知识,涉及考点较多,难度较

28、大第(3)问中,注意等腰三角形有三种情形,需要分类讨论,避免因漏解而导致失分2(2012连云港)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求ABD的面积;(3)将AOC绕点C逆时针旋转90,点A对应点为点G,问点G是否在该抛物线上?请说明理由考点:二次函数综合题。专题:代数几何综合题。分析:(1)在矩形OCEF中,已知OF、EF的长,先表示出C、E的坐标,然后利用待定系数法确定该函数的解析式(2)根据(1)的函数解析式求

29、出A、B、D三点的坐标,以AB为底、D点纵坐标的绝对值为高,可求出ABD的面积(3)首先根据旋转条件求出G点的坐标,然后将点G的坐标代入抛物线的解析式中直接进行判定即可解答:解:(1)四边形OCEF为矩形,OF=2,EF=3,点C的坐标为(0,3),点E的坐标为(2,3)把x=0,y=3;x=2,y=3分别代入y=x2+bx+c中,得,解得,抛物线所对应的函数解析式为y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,抛物线的顶点坐标为D(1,4),ABD中AB边的高为4,令y=0,得x2+2x+3=0,解得x1=1,x2=3,所以AB=3(1)=4,ABD的面积=44=8;(3)A

30、OC绕点C逆时针旋转90,CO落在CE所在的直线上,由(2)可知OA=1,点A对应点G的坐标为(3,2),当x=3时,y=32+23+3=02,所以点G不在该抛物线上点评:这道函数题综合了图形的旋转、面积的求法等知识,考查的知识点不多,难度适中3(2012丽水)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OBOA,交抛物线于点B,以OA、OB为边构造矩形AOBC(1)如图1,当点A的横坐标为1时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,求点B的坐标;将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=x2,试判断抛物线y=x2经过平移交换后,能否经过

31、A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由考点:二次函数综合题。专题:代数几何综合题。分析:(1)过点A作ADx轴于点D,根据正方形的对角线平分一组对角可得AOC=45,所以AOD=45,从而得到AOD是等腰直角三角形,设点A坐标为(a,a),然后利用点A在抛物线上,把点的坐标代入解析式计算即可得解;(2)过点A作AEx轴于点E,过点B作BFx轴于点F,先利用抛物线解析式求出AE的长度,然后证明AEO和OFB相似,根据相似三角形对应边成比例列式求出OF与BF的关系,然后利用点B在抛物线上,设出点B的坐标代入抛物线解析式计算即可得解;过点C作CGBF于点G,可以证明AEO和

32、BGC全等,根据全等三角形对应边相等可得CG=OE,BG=AE,然后求出点C的坐标,再根据对称变换以及平移变换不改变抛物线的形状利用待定系数法求出过点A、B的抛物线解析式,把点C的坐标代入所求解析式进行验证变换后的解析式是否经过点C,如果经过点C,把抛物线解析式转化为顶点式解析式,根据顶点坐标写出变换过程即可解答:解:(1)如图,过点A作ADx轴于点D,矩形AOBC是正方形,AOC=45,AOD=9045=45,AOD是等腰直角三角形,设点A的坐标为(a,a)(a0),则(a)2=a,解得a1=1,a2=0(舍去),点A的坐标a=1,故答案为:1;(2)过点A作AEx轴于点E,过点B作BFx轴

33、于点F,当x=时,y=()2=,即OE=,AE=,AOE+BOF=18090=90,AOE+EAO=90,EAO=BOF,又AEO=BFO=90,AEOOFB,=,设OF=t,则BF=2t,t2=2t,解得:t1=0(舍去),t2=2,点B(2,4);过点C作CGBF于点G,AOE+EAO=90,FBO+CBG=90,AOE=FBO,EAO=CBG,在AEO和BGC中,AEOBGC(AAS),CG=OE=,BG=AE=xc=2=,yc=4+=,点C(,),设过A(,)、B(2,4)两点的抛物线解析式为y=x2+bx+c,由题意得,解得,经过A、B两点的抛物线解析式为y=x2+3x+2,当x=时

34、,y=()2+3+2=,所以点C也在此抛物线上,故经过A、B、C三点的抛物线解析式为y=x2+3x+2=(x)2+平移方案:先将抛物线y=x2向右平移个单位,再向上平移个单位得到抛物线y=(x)2+点评:本题是对二次函数的综合考查,包括正方形的性质,相似三角形的判定与性质,全等三角形的判定与性质,待定系数法求抛物线解析式,综合性较强,难度较大,要注意利用点的对称、平移变换来解释抛物线的对称平移变换,利用点研究线也是常用的方法之一4(2012乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C已知实数

35、m、n(mn)分别是方程x22x3=0的两根(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD当OPC为等腰三角形时,求点P的坐标;求BOD 面积的最大值,并写出此时点D的坐标考点:二次函数综合题。分析:(1)首先解方程得出A,B两点的坐标,进而利用待定系数法求出二次函数解析式即可;(2)首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可;利用SBOD=SODQ+SBDQ得出关于x的二次函数,进

36、而得出最值即可解答:解(1)解方程x22x3=0,得 x1=3,x2=1mn,m=1,n=3(1分)A(1,1),B(3,3)抛物线过原点,设抛物线的解析式为y=ax2+bx解得:,抛物线的解析式为(4分)(2)设直线AB的解析式为y=kx+b解得:,直线AB的解析式为C点坐标为(0,)(6分)直线OB过点O(0,0),B(3,3),直线OB的解析式为y=xOPC为等腰三角形,OC=OP或OP=PC或OC=PC设P(x,x),(i)当OC=OP时,解得,(舍去)P1(,)(ii)当OP=PC时,点P在线段OC的中垂线上,P2(,)(iii)当OC=PC时,由,解得,x2=0(舍去)P3(,)P

37、点坐标为P1(,)或P2(,)或P3(,)(9分)过点D作DGx轴,垂足为G,交OB于Q,过B作BHx轴,垂足为H设Q(x,x),D(x,)SBOD=SODQ+SBDQ=DQOG+DQGH,=DQ(OG+GH),=,=,0x3,当时,S取得最大值为,此时D(,)(13分)点评:此题主要考查了二次函数的综合应用以及等腰三角形的性质和三角形面积求法等知识,求面积最值经常利用二次函数的最值求法得出5(2012兰州)若x1、x2是关于一元二次方程ax2+bx+c(a0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=,x1x2=把它称为一元二次方程根与系数关系定理如果设二次函

38、数y=ax2+bx+c(a0)的图象与x轴的两个交点为A(x1,0),B(x2,0)利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1x2|=;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然ABC为等腰三角形(1)当ABC为直角三角形时,求b24ac的值;(2)当ABC为等边三角形时,求b24ac的值考点:抛物线与x轴的交点;根与系数的关系;等腰三角形的性质;等边三角形的性质。分析:(1)当ABC为直角三角形时,由于AC=BC,所以ABC为等腰直角三角形,过C作CEAB于E,则

39、AB=2CE根据本题定理和结论,得到AB=,根据顶点坐标公式,得到CE=|=,列出方程,解方程即可求出b24ac的值;(2)当ABC为等边三角形时,解直角ACE,得CE=AE=,据此列出方程,解方程即可求出b24ac的值解答:解:(1)当ABC为直角三角形时,过C作CEAB于E,则AB=2CE抛物线与x轴有两个交点,=b24ac0,则|b24ac|=b24aca0,AB=,又CE=|=,b24ac0,b24ac=4;(2)当ABC为等边三角形时,由(1)可知CE=,b24ac0,b24ac=12点评:本题考查了等腰直角三角形、等边三角形的性质,抛物线与x轴的交点及根与系数的关系定理,综合性较强

40、,难度中等6(2012兰州)如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上(1)求抛物线对应的函数关系式;(2)若把ABO沿x轴向右平移得到DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作BD交x轴于点N

41、,连接PM、PN,设OM的长为t,PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由考点:二次函数综合题。分析:(1)根据抛物线y=经过点B(0,4),以及顶点在直线x=上,得出b,c即可;(2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x=时,求出y即可;(4)利用MNBD,得出OMNOBD,进而得出,得到ON=,进而表示出PMN的面积,利用二次函数最值求出即可解答:解:(

42、1)抛物线y=经过点B(0,4)c=4,顶点在直线x=上,;所求函数关系式为;(2)在RtABO中,OA=3,OB=4,AB=,四边形ABCD是菱形,BC=CD=DA=AB=5,C、D两点的坐标分别是(5,4)、(2,0),当x=5时,y=,当x=2时,y=,点C和点D都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,当x=时,y=,P(),(4)MNBD,OMNOBD,即得ON=,设对称轴交x于点F,则(PF+OM)OF=(+t),()=,S=(),=(0t4),S存在最大值由S=(t)2+,当S=时,S取最大值是,此时,点M的坐标为(0,)点评:此题主要考查了二次函数的综合应用,以及菱形性质和待定系数法求解析式,求图形面积最值,利用二次函数的最值求出是解题关键7(2012荆门)已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2=4x1x2求k的值;当kxk+2时,请结合函数图象确定y的最大值和最大值考点:抛物线与x轴的交点;一次函数的定义;二次函数的最值。分析:(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k1时,函数为二次函数,若与x轴有交点,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 常用办公文档
版权提示 | 免责声明

1,本文(二次函数中考大题总结及答案详解.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|