高考数学解题之换元法(DOC 9页).docx

上传人(卖家):2023DOC 文档编号:5698972 上传时间:2023-05-04 格式:DOCX 页数:10 大小:264.47KB
下载 相关 举报
高考数学解题之换元法(DOC 9页).docx_第1页
第1页 / 共10页
高考数学解题之换元法(DOC 9页).docx_第2页
第2页 / 共10页
高考数学解题之换元法(DOC 9页).docx_第3页
第3页 / 共10页
高考数学解题之换元法(DOC 9页).docx_第4页
第4页 / 共10页
高考数学解题之换元法(DOC 9页).docx_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换元、三角换元、均值换

2、元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4220,先变形为设2t(t0),而变为熟悉的一元二次不等式求解和指数方程的问题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y的值域时,易发现x0,1,设xsin ,0,,问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件xyr(r0)时,则可作三角代换xrcos、yrsin化为三角问题。均值换元,如遇到xyS形式

3、时,设xt,yt等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t0和0,。、再现性题组:1.ysinxcosxsinx+cosx的最大值是_。2.设f(x1)log(4x) (a1),则f(x)的值域是_。3.已知数列a中,a1,aaaa,则数列通项a_。4.设实数x、y满足x2xy10,则xy的取值范围是_。5.方程3的解是_。6.不等式log(21) log(22)2的解集是_。【简解】1小题:设sinx+cosxt,,则yt,对称轴t1,当t,y;2小题:设x1t (t

4、1),则f(t)log-(t-1)4,所以值域为(,log4;3小题:已知变形为1,设b,则b1,b1(n1)(-1)n,所以a;4小题:设xyk,则x2kx10, 4k40,所以k1或k1;5小题:设3y,则3y2y10,解得y,所以x1;6小题:设log(21)y,则y(y1)2,解得2y0,求f(x)2a(sinxcosx)sinxcosx2a的最大值和最小值。【解】 设sinxcosxt,则t-,,由(sinxcosx)12sinxcosx得:sinxcosx f(x)g(t)(t2a) (a0),t-,t-时,取最小值:2a2a当2a时,t,取最大值:2a2a ;当00恒成立,求a的

5、取值范围。(87年全国理)【分析】不等式中log、 log、log三项有何联系?进行对数式的有关变形后不难发现,再实施换元法。【解】 设logt,则loglog3log3log3t,log2log2t,代入后原不等式简化为(3t)x2tx2t0,它对一切实数x恒成立,所以:,解得 t0即log001,解得0a0恒成立,求k的范围。【分析】由已知条件1,可以发现它与ab1有相似之处,于是实施三角换元。【解】由1,设cos,sin,即: 代入不等式xyk0得:3cos4sink0,即k3cos4sin5sin(+) 所以k0 k 平面区域本题另一种解题思路是使用数形结合法的思想方法:在平面直角坐标

6、系,不等式axbyc0 (a0)所表示的区域为直线axbyc0所分平面成两部分中含x轴正方向的一部分。此题不等式恒成立问题化为图形问题:椭圆上的点始终位于平面上xyk0的区域。即当直线xyk0在与椭圆下部相切的切线之下时。当直线与椭圆相切时,方程组有相等的一组实数解,消元后由0可求得k3,所以k0),则f(4)的值为_。A. 2lg2 B. lg2 C. lg2 D. lg42. 函数y(x1)2的单调增区间是_。A. -2,+) B. -1,+) D. (-,+) C. (-,-13. 设等差数列a的公差d,且S145,则aaaa的值为_。A. 85 B. 72.5 C. 60 D. 52.54. 已知x4y4x,则xy的范围是_。5. 已知a0,b0,ab1,则的范围是_。6. 不等式ax的解集是(4,b),则a_,b_。7. 函数y2x的值域是_。8. 在等比数列a中,aaa2,aaa12,求aaa。 y D C A B O x9. 实数m在什么范围内取值,对任意实数x,不等式sinx2mcosx4m10,y0)上移动,且AB、AD始终平行x轴、y轴,求矩形ABCD的最小面积。 10

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 各科综合
版权提示 | 免责声明

1,本文(高考数学解题之换元法(DOC 9页).docx)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|