1、高考数学考前指导目 录一、选择题的解法 二、填空题的解法 三、三角函数解答题的解法。四、立体几何解答题的解法。五、概率解答题的解法。六、数列解答题的解法。七、函数解答题的解法。八、不等式解答题的解法。九、解析几何解答题的解法。十、应用题 。十一、高考复习指导:考好数学四大“绝招”十二、小知识点: 一、 选择题的解法一、知识归纳 数学选择题在当今高考试卷中,不但题目多,而且占分比例高,近年来选择题均为60分,占数学总分的40%。数学选择题具有概栝性强,知识覆盖面广,小巧灵活,有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。二、 数学选择题的求解,一般有
2、两种思路:一是从题干出发考虑,探求结果(常规解法 80-90%);二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件。三、选择题的类型: (1)定量型 (2)定性型 (3)定位型 (4)定形型 (5)综合型 (6)信息迁移型等四、解选择题的基本要求:1:审2:察 3:思 4:解5:注意间接解法的应用。尽量避免“小题大做”。注意 “准”、 “快”、 “巧”。合理跳步、巧妙转化。五、常用方法:直接法:(常规解法 80-90%)排除法(淘汰法):选择题中的正确答案都是唯一的。使用筛选法的具体做法是:充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,采用简捷有效的手段(如取特殊值
3、,找特殊点,选特殊位置等),通过分析、推理、计算、判断,对各选择支进行筛选,排除假支,选出真支。特例法:就是运用满足题设条件的某些特殊值、特殊位置、特殊关系、特殊图形、特殊函数等对各各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,达到肯定一支或否定三支(去谬)的目的。数形结合法估算法:是一种粗略的算法,即把复杂的问题转化为较简单的问题,求出答案的近似值,或把有关数值扩大或缩小,从而对运算结果确定出一个范围或作出一个估计,进而作出判断的方法。二、填空题的解法考题剖析直接求解法特例求解法:包括特殊值法、特殊函数法、特殊位置法、特殊点法、特殊数列法、特殊模型法等;
4、当填空题的题目提供的信息暗示答案唯一或其值为定值时,可选取符合条件的特殊情形进行处理,得到结论。数形结合法三、三角函数解答题的解法一、 知识归纳:1、应用诱导公式,重点是“函数名称”与“正负号”的正确判断,一般常用“奇变偶不变,符号看象限”的口诀确定三角函数名称和判定三角函数值的符号。2、在运用两角和、两角差、二倍角的相关公式时,注意观察角之间的关系,公式应正确、熟练地记忆与应用,并注意总结公式的应用经验,对一些公式不仅会用,还会逆用,变形用,如的变形,二倍角公式的变形用:, ,tan=,等。3、常用的三角变换 角的变换:主要是将三角函数中的角恰当变形,以利于应用公式和已知条件:如2=(+)+
5、 (-) 2=(+)-(-) =(+)/2+( -)/2,=(+)/2-( -)/2 =2/2=(+-)函数名称变换: 主要是切割化弦、弦切互换、正余弦互换、正余切互换。 公式的活用主要有公式的正用、逆用、变形用。通过适当的三角变换,以减少函数种类及项数,降低次数,使一般角化为特殊角。注意切割化弦通分、降幂和升幂等方法的使用,充分利用三角函数值的变式,如,1=tan450 ,-1=tan1350 , = tan600, =cos600或 =sin300,sinx+cosx=2sin(x+),创造条件使用公式。4、三角函数的图像与性质(1)掌握函数y=Asin(x+)的图像与函数y=sinx的图
6、像之间互相交换,提倡先平移后压缩(伸展),但先压缩(伸展)后平移也经常出现现在题目中,所以也必须熟练掌握,无论是哪种变换,切记每一个变换总是对字母x而言,即图像变换要看“单个变量”起多大变化,而不是“角变化”多少。另注意能以向量的形式表示平移。(2)函数y=Asin(x+)的图像是中心对称图形。其对称中心是图像与x轴的交点,同时也是轴对称图形,对称轴是经过图像的波峰顶或波谷底且与x轴垂直的直线。给出图像确定解析式的题型,有时从确定“五点法”中的第几个点作为突破口即可。求定义域是研究其他性质首先应要考虑的方面之一,既要注意一般函数求定义域的规律,又要注意三角函数本身的特有属性,例如题中出现tan
7、x,则一定有xk+(/2)(kZ),不要遗忘.又如y=sinx+cosx+sinxcosx,令t=sinx+cosx, Sinxcosx=,y=t+(注意t的范围)5、解三角形(正、余弦定理,面积公式) 外接圆半径 内切圆半径S=)r6、与平面向量结合,注意平面向量知识1)平面向量的加减法运算(平行四边形法则,三角形法则)2)两向量平行:3)两向量垂直:4)向量的数量积: (注意向量的夹角)四、立体几何解答题的解法一、 知识归纳:(一)空间角的计算主要步骤;一作、二证、三算;若用向量,那就是一证、二算。1 两条异面直线所成的角 (0/2) 平移法:在异面直线中的一条直线上选择“特殊点”,作另一
8、条直线的平行线,常常利用中位线或成比例线段引平行线。 补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系。2直线和平面所成的角(0/2) 作出直线和平面所成的角,关键是垂线,找射影转化到同一三角形中计算,或用向量计算。3二面角(0)平面角的作法:定义法;三垂线定理及其定理法;垂面法。平面角计算法:找到平面角,然后在三角形中计算(解三角形)或用向量计算。射影面积法:cosA =S射影 /S(二)空间距离的计算:1 求点到直线的距离,经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离
9、。2 求两条异面直线距离,一般先找出其公垂线,然后求其公垂线段的长,在不能直接作出公垂线的情况下,可转化为线面距离求解.3 求点到平面的距离,一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知求距离比较困难难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。(三)平面向量知识(1) 平面向量的加减法运算(平行四边形法则,三角形法则)(2) 两向量平行:(3) 两向量垂直:(4)
10、向量的数量积: (注意向量的夹角)(四)向量在立体几何中应用在高考的立体几何试题中,求角与距离是常考查的问题,运用向量方法简捷地解决这些问题1 求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角()求异面直线所成的角设、分别为异面直线a、b的方向向量,则两异面直线所成的角 =()求线面角设是斜线l的方向向量,是平面的法向量,则斜线l与平面所成的角=()求二面角法一、在内,在内,其方向如图,则二面角的平面角=法二、设是二面角的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角的平面角=2 求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的
11、求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求()求点面距离法一、设是平面的法向量,在内取一点B, 则 A到的距离法二、设于O,利用和点O在内的向量表示,可确定点O的位置,从而求出()求异面直线的距离法一、找平面使且,则异面直线a、b的距离就转化为直线a到平面的距离,又转化为点A到平面的距离 二、在a上取一点A, 在b上取一点B, 设、分别为异面直线a、b的方向向量,求(,),则异面直线a、b的距离(此方法移植于点面距离的求法) 五、概率解答题的解法一、知识归纳:1(1)等可能性事件的概念也称古典概率,它的特征为: 每一次试验中所有可能出现的结果是有限的; 每一个结果出现的可
12、能性是相等的;等可能性事件概率的计算步骤 计算一次试验的基本事件的总数n; 计算事件A包含的基本事件的个数m; 依公式P(A) =m/n求值。2 互斥事件与对立事件的区别与联系互斥事件与对立事件都是研究两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要要求这两个事件不同时发生外,还要求二者之一必须有一个发生。因此,对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要而非充分条件。3 互斥事件的概率:P(A+B)=P(A)+P(B)对立事件的概率:P(A+)=P(A)+P()=1相互独立事件的概率:P(AB)=P(A)P(B)n次独立重复试
13、验中事件A恰好发生k次的概率:Pn(k)=Cnk Pk(1-P)n-k4. 在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和,二是先去求此事件的对立事件的概率5、离散型随机变量的分布列具有两性质: Pi 0 P1 + P2 + P3 + =1E(c)=c E(a+b)=aE+b 6.D=( x1-E )2 P1 + ( x2-E )2 P2+ ( x3-E )2 P3 + . 7、D(a+b)= a2D 8、二项分布B(n,p) E=np D=npq=np(1-p)9、几何分布g(p,k)= qk-1 p E=1/p D=q/p210、正态分布
14、记做N(,2)其中E= D=2正态分布曲线关于直线x=对称,越大,曲线越“矮胖”;反之越“高瘦”标准正态分布N(0,1) P(X0) 如an= an=f(n) 研究函数f(n)的增减性 如an=8、在数列中,有关Sn 的最值问题转化成 an来解设Sn为最大项,则有 在解含绝对值的数列最值问题时,注意转化思想的应用。七、函数解答题的解法一、知识归纳1、函数的图象及变换 平移变换a 、水平平移y=f(x) y=f(xa) b、 竖直平移y=f(x) y=f(x) b (2)对称变换a、y=f(-x)与y=f(x) 关于y轴对称 b、y=-f(x) 与y=f(x) 关于x轴对称c、y=-f(-x)与
15、y=f(x) 关于原点对称d、y= f-1 (x) 与y=f(x) 关于y=x对称(3)翻折变换a、y=f(x) y=f(x)b、y=f(x) y=f(x)(4)伸缩变换 a、y=f(x) y=Af(x) b、y=f(x) y=f(ax)2、导函数内容 导函数的定义(用极限的观点解释) 多项式函数的导函数公式和超越函数的导函数公式 7 (lnx)=1/x 8(sinx)=cosx 9. (cosx)=-sinx (uv) = uv (uv) = uv+uv =特别地:(x) =1 (x1) = ()=导数的几何意义及其物理意义kf(x0)表示过曲线y=f(x)上的点P(x0,f(x0)的切线的
16、斜率。Vs(t)表示即时速度。a=v(t)表示加速度。(4)导数在函数单调性、极值、最值问题中的运用(5)函数在x= X0 连续的条件在X0 有定义左、右极限存在并相等极限等于该点函数值。(6)可导必连续,连续未必可导。F(x)在x= X0 可 导充要条件左导等于右导。(7)闭区间上的连续函数必有最值。(8)与为增函数的关系。为增函数,一定可以推出,但反之不一定,因为,即为或。当函数在某个区间内恒有,则为常数,函数不具有单调性。八、不等式解答题的解法一、知识归纳不等式解法1 高次不等式、分式不等式常用方法:“序轴标根法” (变形标根穿线写解集)2 解绝对值不等式的常用方法讨论法:讨论绝对值中的
17、式子大于零还是小于零,然后去掉绝对值符号,转化为一般不等式。 等价变形:解绝对不等式常用以下等价变形| x | a x2a2 -axa (a0) | x | a x2a2 xa 或x-a (a0) 一般地有: |f(x)|g(x) -g(x) f(x) g(x) |f(x)| g(x) f(x) g(x)或f(x)-g(x)3 含参数不等式对参数的讨论,要不“重复”不“遗漏”。一要考虑参数总的取值范围,二要用同一标准对参数进行划分,三要使得划分后,不等式的解集的表达式是确定的。算术平均数与几何平均数定理如果a,bR,那么a2+b2 2ab(当且仅当a=b时,取“=” ) 定理如果a,b是正数,
18、那么 (当且仅当a=b时,取“=”)1. 二元均值不等式具有将“和式”转化为“积式”和“积式”转化为“和式”的放缩功能。2. 创设应用均值不等式的条件、合理拆分项或配凑因式是常用的解题技巧,而拆与凑的成因在于使等号能够成立。3. “和定积最大,积定和最小,”即2个正数的和为定值,则可求其积的最大值;积为定值,则可求其和的最小值。应用此结论求值要注意三个条件:各项或因式非负;和或积为定值; 一正二定三相等各项或各因式都能取得相等的值。 必要时要作适当的变形,以满足上述前提。;基本不等式的变式:。OK ; (其中a、bR+)。九、解析几何解答题的解法(一)直线与圆知识要点直线的倾斜角与斜率k=tg
19、,直线的倾斜角一定存在,范围是0,),不一定存在。牢记图像。(二)、圆锥曲线1 椭圆及其标准方程2双曲线及其标准方程:3抛物线及其标准方程:4直线与圆锥曲线:注意点:(1)注意防止由于“零截距”和“无斜率”造成丢解(2)要学会变形使用两点间距离公式,当已知直线的斜率 时,公式变形为或; 解析几何中的一些常用结论: 直线的倾斜角的范围是,) 直线的倾斜角与斜率的变化关系:当倾斜角是锐角是,斜率k随着倾斜角的增大而增大。当是钝角时,k与同增减。 截距不是距离,截距相等时不要忘了过原点的特殊情形。 两直线:L1:A1x+B1y+C1=0 L2: A2x+B2y+C2=0 L1L2A1A2+B1B2=
20、0; L1/ L2A1B2=A2B1 两直线的到角公式 L1到L2的角为, tan= 夹角为,tan=| 注意夹角和到角的区别 点到直线的距离公式,两平行直线间距离的求法。7交弦所在直线方程的求法:圆C1的方程为:x2+y2+D1x+E1y+C1=0. 圆C2的方程为:x2+y2+D2x+E2y+C2=0. 把两式相减得相交弦所在直线方程为:(D1-D2)x+(E1-E2)y+(C1-C2)=08圆上一点到某点或者某条直线的距离的最大、最小值的求法。9半径公式:在椭圆中,F、F分别左右焦点,P(x0,y0)是椭圆是一点。则: |PF1|=a+ex0 |PF2|=a-ex0 10曲线中到焦点的距
21、离问题经常转化为到准线的距离。11抛物线中与焦点有关的一些结论:焦点弦:AB= x1 + x2 +P常见的求轨迹方程的方法有以下几种:直接法:(几何法)将原题中由文字语言明确给出动点所满足的等量关系直接翻译成由动点坐标表示的等量关系式。待定系数法:由已知条件可以根据定义判断出曲线类型,可用待定系数法设出方程具有形式,转化为求方程而解决。代入法:所求动点与已知动点有着相互关系,可用所求动点坐标(x,y)表示出已知动点的坐标,然后代入已知的曲线方程。参数法:通过一个(或多个)中间变量的引入,使所求点的坐标之间的关系更容易确立,消去参数得坐标的直接关系便是普通方程。交轨法:动点是两条动曲线的交点,由
22、x,y满足的两个动曲线方程中消去参数,可得所求方程。故交轨法也属参数法。 (6)定义法十、应用题解应用题的一般程序(1)读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.(2)建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.(3)解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.(4)答:将数学结论还原给实际问题的结果中学数学中常见应用问题与数学模型(1)优化问题.实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决.(2)预测问题:
23、经济计划、市场预测这类问题通常设计成“数列模型”来解决.(3)最(极)值问题:工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值.(4)等量关系问题:建立“方程模型”解决(5)测量问题:可设计成“图形模型”利用几何知识解决.十一、高考复习指导:考好数学四大“绝招” 如何在高考有限的时间内充分发挥自己的水平,对每个考生来说是很重要的一件事,它对你数学成绩的影响也许是几分、十几分、甚至更多。根据我的观察与分析,以下四方面对考生解答高考数学题应有帮助。审题与解题的关系有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启
24、发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a0”,自变量的取值范围,隐含条件等等),从中获取尽可能多的信息,才能迅速找准解题方向。“会做”与“得分”的关系要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失13以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,
25、许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”。快与准的关系在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。难题与容易题的关系拿到试卷后
26、,应将全卷通览一遍,(因人而异)一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 十二、小知识点:一 二项式定理:1(a+b)n=Cn0ax+Cn1an1b1+
27、 Cn2an2b2+ Cn3an3b3+ Cnranrbr+ Cn n1abn1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn2通项为第r+1项:Tr+1= Cnranrbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。3主要性质和主要结论:对称性Cnm=Cnnm 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn+Cn1+Cn2+ Cn3+ Cn4+Cnr+Cnn=2n奇数项二项式系数的和偶数项而是系数的和Cn+Cn+Cn+ Cn+Cn+Cn+Cn+ Cn+=2n-14.注意二项式系数与项的系
28、数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。6二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。二的单调性: 是减函数;是增函数三对数运算法则:logx+ logy= log(xy); logx - logy= log(x/y); a=x(x0);四二次函数求最值问题:首先要采用配方法,化为 的形式。、若顶点的横坐标在给定的区间上,则时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;、若顶点的横坐标不在给定的区间上,则
29、时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得。五、反函数:(1)求反函数的步骤:将看成关于的方程,解出,若有两解,要注意解的选择;将互换,得;写出反函数的定义域(即的值域)。(2)互为反函数的图象间的关系:关于y=x对称;(3)原函数与反函数具有相同的单调性(但区间不同);(4)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。六函数定义域的求法:含参问题的定义域要分类讨论;如:已知函数的定义域是,求的定义域。七、映射与函数:如:若,;问:到B的映射有 个,到A的映射有 个;A到B的函数有 个,若,则A到B的一一映射有 个。八、原命题与逆否命题,否命题与逆命题具有相同的 真值 ;注意:“若,则qp”在解题中的运用,如:“”是“”的 条件。九、集合中元素的个数的计算: 若集合中有个元素,则集合的所有不同的子集个数为2,所有真子集的个数是2-1,所有非空真子集的个数是2-2。高考临近,祝愿每一位考生取得好成绩!