1、第第4讲导数与函数的单调性、极值、最值讲导数与函数的单调性、极值、最值问题问题高考定位利用导数研究函数的性质,以含指数函数、对数函数、三次有理函数为载体,研究函数的单调性、极值、最值,并能解决简单的问题.真真 题题 感感 悟悟 1.(2017全国卷)若x2是函数f(x)(x2ax1)ex1的极值点,则f(x)的极小值为()A.1 B.2e3 C.5e3 D.1 解析f(x)x2(a2)xa1ex1,则f(2)42(a2)a1e30a1,则f(x)(x2x1)ex1,f(x)(x2x2)ex1,令f(x)0,得x2或x1,当x1时,f(x)0,当2x1时,f(x)0是f(x)为增函数的充分不必要
2、条件,如函数f(x)x3在(,)上单调递增,但f(x)0.f(x)0是f(x)为增函数的必要不充分条件,如果函数在某个区间内恒有f(x)0时,则f(x)为常数函数.(2)利用导数研究函数单调性的方法.若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f(x)0或f(x)0,右侧f(x)0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f(x)0,则f(x0)为函数f(x)的极小值.(2)设函数yf(x)在a,b上连续,在(a,b)内可导,则f(x)在a,b上必有最大值和最小值且在极值点或端点处取得.易错提醒若函数的导数存在,某点的导数等于零是函数在该点取得极值的必要而不充
3、分条件.热点一导数的几何意义【例1】(1)(2017鹰潭一模)已知曲线f(x)2x21在点M(x0,f(x0)处的瞬时变化率为8,则点M的坐标为_.(2)(2016全国卷)已知f(x)为偶函数,当x0时,f(x)ex1x,则曲线yf(x)在点(1,2)处的切线方程是_.解析(1)f(x)2x21,f(x)4x,令4x08,则x02,f(x0)9,点M的坐标是(2,9).(2)因为f(x)为偶函数,所以当x0时,f(x)f(x)ex1x.所以f(x)ex11,f(1)e1112.所以f(x)在点(1,2)处的切线方程为y22(x1),即2xy0.答案(1)(2,9)(2)2xy0探究提高1.(1
4、)利用导数的几何意义解题主要是利用导数、切点坐标、切线斜率之间的关系来转化,其中关键是求出切点的坐标.(2)以平行、垂直直线斜率间的关系为载体求参数的值,则根据平行、垂直与斜率之间的关系和导数联系起来求解.2.求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.答案(1)A(2)1探究提高1.求函数的单调区间,只需在函数的定义域内解(证)不等式f(x)0或f(x)0.(2)对k分类讨论不全,题目中已知k0,对k分类讨论时容易对标准划分不准确,讨论不全面.【迁移探究1】若将本例中的条件“k0”
5、变为“k0”,其他条件不变,f(x)在(0,2)上的单调性如何?【迁移探究2】在本例(1)中,将“(0,2)”改为(0,),其他条件不变,求函数f(x)的单调区间.探究提高1.已知函数的单调性,求参数的取值范围,应用条件f(x)0(或f(x)0),x(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f(x)不恒等于0的参数的范围.2.若函数yf(x)在区间(a,b)上不单调,则转化为f(x)0在(a,b)上有解.【训练2】已知aR,函数f(x)(x2ax)ex(xR,e为自然对数的底数).(1)当a2时,求函数f(x)的单调递增区间;(2)若函数f(x)
6、在(1,1)上单调递增,求a的取值范围;解(1)f(x)excos xx,f(0)1,f(x)ex(cos xsin x)1,f(0)0,yf(x)在(0,f(0)处的切线方程为y10(x0),即y1.命题角度2与函数极值点个数有关问题【例32】(2017衡水中学月考)已知函数f(x)ax1ln x(aR).(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x1处取得极值,x(0,),f(x)bx2恒成立,求实数b的最大值.探究提高1.求函数f(x)的极值,则先求方程f(x)0的根,再检查f(x)在方程根的左右附近函数值的符号.2.若已知极值大小或存在情况,则转化为已知方程
7、f(x)0根的大小或存在情况来求解.3.求函数f(x)在闭区间a,b的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值.1.如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“”连接,而只能用逗号或“和”字隔开.2.可导函数在闭区间a,b上的最值,就是函数在该区间上的极值及端点值中的最大值与最小值.3.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f(x),“f(x)在xx0处的导数f(x0)0”是“f(x)在xx0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.4.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根的个数、大小、根是否在定义域内可能都与参数有关,则需对参数进行分类讨论.5.求函数的极值、最值问题,一般需要求导,借助函数的单调性,转化为方程或不等式问题来解决,有正向思维直接求函数的极值或最值;也有逆向思维已知函数的极值或最值,求参数的值或范围,常常用到分类讨论、数形结合的思想.