1、专题限时集训(十四)导数1(2020全国卷)已知函数f (x)exa(x2) (1)当a1时,讨论f (x)的单调性;(2)若f (x)有两个零点,求a的取值范围解(1)当a1时,f (x)exx2,则f (x)ex1.当x0时,f (x)0时,f (x)0.所以f (x)在(,0)上单调递减,在(0,)上单调递增(2)f (x)exa.当a0时,f (x)0,所以f (x)在(,)上单调递增,故f (x)至多存在1个零点,不合题意当a0时,由f (x)0可得xln a当x(,ln a)时,f (x)0.所以f (x)在(,ln a)上单调递减,在(ln a,)上单调递增故当xln a时,f
2、(x)取得最小值,最小值为f (ln a)a(1ln a)()若0,则f (ln a)0,所以f (x)在(,ln a)存在唯一零点由(1)知,当x2时,exx20,所以当x4且x2ln(2a)时,f (x)eea(x2)eln(2a)a(x2)2a0.故f (x)在(ln a,)存在唯一零点从而f (x)在(,)有两个零点综上,a的取值范围是,.2(2020新高考全国卷)已知函数(x)aex1ln xln a.(1)当ae时,求曲线y(x)在点(1,(1)处的切线与两坐标轴围成的三角形的面积;(2)若(x)1,求a的取值范围解f (x)的定义域为(0,),f (x)aex1.(1)当ae时,
3、f (x)exln x1,f (1)e1,f (1)e1,曲线yf (x)在点(1,f (1)处的切线方程为y(e1)(e1)(x1),即y(e1)x2.直线y(e1)x2在x轴,y轴上的截距分别为,2.因此所求三角形的面积为2.(2)当0a1时,f (1)aln a1.当a1时,f (x)ex1ln x,f (x)ex1.当x(0,1)时,f (x)0.所以当x1时,f (x)取得最小值,最小值为f (1)1,从而f (x)1.当a1时,f (x)aex1ln xln aex1ln x1.综上,a的取值范围是1,)3.(2018全国卷)已知函数f (x)xaln x.(1)讨论f (x)的单
4、调性;(2)若f (x)存在两个极值点x1,x2,证明:a2.解(1)f (x)的定义域为(0,),f (x)1.()若a2,则f (x)0,当且仅当a2,x1时f (x)0,所以f (x)在(0,)单调递减()若a2,令f (x)0,得x或x.当x时,f (x)0;当x时,f (x)0.所以f (x)在,单调递减,在单调递增(2)证明:由(1)知,f (x)存在两个极值点时,当且仅当a2.由于f (x)的两个极值点x1,x2满足x2ax10,所以x1x21,不妨设x1x2,则x21.由于1a2a2a,所以a2等价于x22ln x20.设函数g(x)x2ln x,由(1)知,g(x)在(0,)
5、单调递减,又g(1)0,从而当x(1,)时,g(x)0.所以x22ln x20,即a2.4(2020全国卷)已知函数f (x)sin2xsin 2x.(1)讨论f (x)在区间(0,)的单调性;(2)证明:|f (x)|;(3)设nN*,证明:sin2xsin22xsin24xsin22nx.解(1)f (x)cos x(sin xsin 2x)sin x(sin xsin 2x)2sin xcos xsin 2x2sin2xcos 2x2sin xsin 3x.当x时,f (x)0;当x时,f (x)0.所以f (x)在区间,单调递增,在区间单调递减(2)证明:因为f (0)f ()0,由(
6、1)知,f (x)在区间0,的最大值为f ,最小值为f .而f (x)是周期为的周期函数,故|f (x)|.(3)证明:由于(sin2xsin22xsin22nx)|sin3xsin32xsin32nx|sin x|sin2xsin32xsin32n1xsin 2nx|sin22nx|sin x|f (x)f (2x)f (2n1x)|sin22nx|f (x)f (2x)f (2n1x)|,所以sin2xsin22xsin22nx.1(2020陕西百校联盟第一次模拟)已知函数f (x)ln x,g(x)2(x0)(1)试判断f (x)与g(x)的大小关系;(2)试判断曲线yf (x)和yg(
7、x)是否存在公切线?若存在,求出公切线的方程;若不存在,说明理由解(1)设F(x)f (x)g(x),则F(x)(x0)由F(x)0,得x3,当0x3时,F(x)0,当x3时,F(x)0,故F(x)在区间(0,3)上单调递减,在区间(3,)上单调递增,所以F(x)的最小值F(3)ln 310,所以F(x)0,即f (x)g(x)(2)假设曲线yf (x)与yg(x)有公切线,切点分别为P(x0,ln x0)和Q.因为f (x),g(x),所以分别以P(x0,ln x0)和Q为切点的切线方程为yln x01,yx2.令得2ln x1(3ln 3)0.令h(x)2ln x(3ln 3),所以h(x
8、)(x0),令h(x)0,得x3.显然,当0x3时,h(x)0,当x3时,h(x)0,所以h(x)在区间(0,3)上单调递减,在区间(3,)上单调递增,所以h(x)的最小值h(3)2ln 323ln 3ln 310,所以h(x)0,所以方程2ln x1(3ln 3)0无解,所以曲线yf (x)与曲线yg(x)不存在公切线2(2020四川五校联考)已知函数f (x)aln xx2(a2)x.(1)当a4时,求函数f (x)的单调递增区间;(2)当a0时,对于任意的x1,),不等式f (x)1a2恒成立,求实数a的取值范围解(1)函数f (x)的定义域为(0,)当a4时,f (x)4ln xx26
9、x,f (x)2x6,令f (x)0,解得x2或0x1.f (x)的单调递增区间为(0,1,2,)(2)令g(x)f (x)a21(x1),则g(x)f (x)2x(a2)(x1),当01,即0a2时,f (x)0(当且仅当x1时取等号)g(x)在1,)上单调递增,g(x)ming(1)a2a2(a2)(a1)0(不符合题意,舍去)当1,即a2时,g(x)(x1)20(仅当x1时取等号),g(x)在1,)上单调递增,g(x)ming(1)0(不符合题意,舍去)当1,即a2时,g(x)在上单调递减,在上单调递增g(x)mingalna1,令h(x)xlnx1(x2),则h(x)lnx.x2时,h
10、(x)0,h(x)在(2,)上单调递增,h(x)0.g(x)g0恒成立,满足题意综上所述,a2,即实数a的取值范围为(2,)3(2020潍坊模拟)已知函数f (x)2ln xx2ax(aR)(1)当a2时,求f (x)的图象在x1处的切线方程;(2)若函数g(x)f (x)axm在上有两个不同的零点,求实数m的取值范围解(1)当a2时,f (x)2ln xx22x,f (x)2x2.f (1)1,切点坐标为(1,1)切线的斜率kf (1)2,则切线方程为y12(x1),即y2x1.(2)g(x)2ln xx2m,则g(x)2x.x,令g(x)0,得x1.当x1时,g(x)0;当1xe时,g(x
11、)0.故g(x)在上有最大值g(1),g(1)m1.gm2,g(e)m2e2,g(e)g4e20,则g(e)g,g(x)在上的最小值是g(e)g(x)在上有两个不同的零点的条件是解得1m2,实数m的取值范围是.4(2020贵阳模拟)已知f (x)ex,g(x)x1(e为自然对数的底数)(1)求证:f (x)g(x)恒成立;(2)设m是正整数,对任意正整数n,m,求m的最小值解(1)证明:令h(x)f (x)g(x)exx1,则h(x)ex1,当x(,0)时,h(x)0,当x(0,)时,h(x)0,故h(x)在(,0)上单调递减,在(0,)上单调递增,所以h(x)minh(0)0,即h(x)0恒
12、成立,所以f (x)g(x)恒成立(2)由(1)可知01e,由不等式的性质得eeeeeee2.所以m的最小值为2.1已知函数f (x),g(x)2(xln x)(1)当x0时,证明f (x)g(x);(2)已知点P(x,ex),点Q(sin x,cos x),设函数h(x)(O为坐标原点),当x时,试判断h(x)的零点个数解(1)证明:令(x)f (x)g(x)2(xln x),则(x).令G(x)ex2x(x0),则G(x)ex2(x0),易得G(x)在(0,ln 2)上单调递减,在(ln 2,)上单调递增,G(x)G(ln 2)22ln 20,ex2x0在(0,)上恒成立,可得(x)在(0
13、,1)上单调递减,在(1,)上单调递增,(x)(1)e20,当x0时,f (x)g(x)(2)点P(x,ex),点Q(sin x,cos x),h(x)xsin xexcos x,h(x)sin xxcos xexcos xexsin x(exx)cos x(ex1)sin x.当x时,可知exx,exx0,(exx)cos x0.又(ex1)sin x0,h(x)(exx)cos x(ex1)sin x0,h(x)在上单调递增又h(0)10,h0,h(x)在上有一个零点当x时,cos xsin x0,exx,excos xxsin x,h(x)0在上恒成立,h(x)在上无零点当x时,0cos
14、 xsin x,h(x)ex(cos xsin x)(xcos xsin x)0,h(x)在上单调递减又h0,h0,h(x)在上有一个零点综上,h(x)的零点个数为2.2已知函数f (x)(x1)ln x,g(x)xln x.(1)求函数f (x)的单调区间;(2)令h(x)mf (x)g(x)(m0)的两个零点分别为x1,x2(x1x2),证明:x1ex2.解(1)由题可知f (x)ln x1,f (x)单调递增,且f (1)0,当0x1时,f (x)0,当x1时,f (x)0,因此f (x)的单调递减区间为(0,1),单调递增区间为1,)(2)由题知h(x)m(x1)ln xxln x,所
15、以h(x)m1,由m0可知,h(x)为增函数又h(1)0,所以当0x1时,h(x)0,当x1时,h(x)0,因此h(x)在(0,1)上单调递减,在1,)上单调递增,所以h(x)的最小值h(1)10,当x时,hm(1)(1)0,因此h(x)在上存在一个零点当xe时,h(e)m(e1)e10,因此h(x)在(1,e)上也存在一个零点因此x2x1e,即x1ex2.3函数f (x)aln x6x(aR)(1)讨论函数f (x)的单调性;(2)若a0,证明:当x(0,2时,f (x)0恒成立解(1)f (x)6.令f (x)0,得6x2axa20,解得x1,x2.当a0时,f (x)60,所以f (x)
16、在(0,)上单调递减当a0时,0,0,f (x)在上单调递增,在上单调递减当a0时,0,0,f (x)在上单调递增,在上单调递减(2)证明:当a0时,由(1)得f (x)在上单调递增,在上单调递减当2,即0a4时,f (x)在(0,2上的最大值f (x)maxf aln5aa.因为0a4,所以lnln 2ln e1.所以a0.当2,即a4时,f (x)在(0,2上单调递增,f (x)在(0,2上的最大值f (x)maxf (2)a12.因为a4,ln 2ln e1,所以a0,所以a120.综合可知,当x(0,2时,f (x)0恒成立4已知函数f (x)aexx2bx(a,bR),其导函数为yf
17、 (x)(1)当b2时,若函数yf (x)在R上有且只有一个零点,求实数a的取值范围;(2)设a0,点P(m,n)(m,nR)是曲线yf (x)上的一个定点,是否存在实数x0(x0m),使得f (x0)nf (x0m)成立?并证明你的结论解(1)当b2时,f (x)aexx22x(aR),f (x)aex2x2(aR),由题意得aex2x20,即a,令h(x),则h(x),令h(x)0,解得x2,当x2时,h(x)0,h(x)单调递减;当x2时,h(x)0,h(x)单调递增,h(x)minh(2),当x1时,h(1)4e0,当x2时,h(x)0,若f (x)在R上有且只有一个零点,则a或a0,
18、)(2)由f (x)aexx2bx,得f (x)aex2xb,假设存在x0,则有f (x0)f (x0m)nf (x0m)f (m),即f (x0m),又f ae2b,(x0m)b,ae2b(x0m)b,即ae.a0,e,令tx0m0,则e,两边同时除以em,得e,即teet1,令g(t)ette1,则g(t)ete,令p(t)e1,则p(t)在(0,)上单调递增,且p(0)0,p(t)0对于t(0,)恒成立,即g(t)0对于t(0,)恒成立,g(t)在(0,)上单调递增,又g(0)0,g(t)0对于t(0,)恒成立,ae不成立同理,tx0m0时,也不成立不存在实数x0(x0m),使得f (x0)nf (x0m)成立