(完整版)直线和圆基础习题和经典习题加答案.doc

上传人(卖家):2023DOC 文档编号:5854613 上传时间:2023-05-12 格式:DOC 页数:7 大小:105.50KB
下载 相关 举报
(完整版)直线和圆基础习题和经典习题加答案.doc_第1页
第1页 / 共7页
(完整版)直线和圆基础习题和经典习题加答案.doc_第2页
第2页 / 共7页
(完整版)直线和圆基础习题和经典习题加答案.doc_第3页
第3页 / 共7页
(完整版)直线和圆基础习题和经典习题加答案.doc_第4页
第4页 / 共7页
(完整版)直线和圆基础习题和经典习题加答案.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、【知识网络】 综合复习和应用直线和圆的基础知识,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题,提高分析问题和解决问题能力【典型例题】例1(1)直线xy=1与圆x2y22ay=0(a0)没有公共点,则a的取值范围是 ( )A(0,1) B(1,1) C(1,1) D(0,1(2)圆(x1)2(y)2=1的切线方程中有一个是 ( ) Axy=0 Bxy=0 Cx=0 Dy=0(3)“a=b”是“直线”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件(4)已知直线5x12ya=0与圆x2y22x=0相切,则a的值为 (5)过点(1,)的直线l将圆

2、(x2)2y2=4分成两段弧,当弧所对的圆心角最小时,直线l的斜率k= 例2 设圆上点A(2,3)关于直线x2y=0的对称点仍在圆上,且圆与直线xy1=0相交的弦长为2,求圆的方程 例3 已知直角坐标平面上点Q(2,0)和圆C:x2y2=1,动点M到圆C的切线长与|MQ|的比等于(0)求动点M的轨迹方程,并说明它表示什么曲线例4 已知与曲线C:x2y22x2y1=0相切的直线l叫x轴,y轴于A,B两点,|OA|=a,|OB|=b(a2,b2)(1)求证:(a2)(b2)=2;(2)求线段AB中点的轨迹方程;(3)求AOB面积的最小值【课内练习】1过坐标原点且与圆x2y24x2y=0相切的直线的

3、方程为 ( )Ay=3x 或y=x By=3x 或y=x Cy=3x 或y=x Dy=3x 或y=x2圆(x2)2y2=5关于原点(0,0)对称的圆的方程为( ) A(x2)2y2=5 Bx2 (y2)2=5 C (x2)2(y2)2=5Dx2 (y2)2=5 3对曲线|x|y|=1围成的图形,下列叙述不正确的是 ( )A关于x轴对称 B关于y轴对称 C关于原点轴对称 D关于y=x轴对称4直线l1:y=kx1与圆x2y2kxy4=0的两个交点关于直线l2:yx=0对称,那么这两个交点中有一个是 ( )A(1,2) B(1,2) C(3,2) D(2,3)5若直线y=kx2与圆(x2)2(y3)

4、2=1有两个不同的交点,则k的取值范围是 6已知直线axbyc0与圆O:x2y21相交于A、B两点,且|AB|,则 .7直线l1:y=2x4关于点M(2,3)的对称直线方程是 8求直线l1:xy4=0关于直线l:4y3x1=0对称的直线l2的方程9已知圆C:x2y22x4y3=0 (1)若C的切线在x轴,y轴上的截距的绝对值相等,求此切线方程; (2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为原点,且有|PM|=|PO|,求使|PM|最小的P点的坐标10由动点P引圆x2y2=10的两条切线PA,PB,直线PA,PB的斜率分别为k1,k2(1)若k1k2k1k2=1,求动点P的轨

5、迹方程;(2)若点P在直线xy=m上,且PAPB,求实数m的取值范围115直线与圆的综合应用A组1设直线过点(0,a),其斜率为1,且与圆x2y2=2相切,则a的值为 ( ) A B2 C2 D42将直线2xy0,沿x轴向左平移1个单位,所得直线与圆x2+y2+2x4y=0相切,则实数的值为A3或7B2或8C0或10D1或113从原点向圆 x2y212y27=0作两条切线,则该圆夹在两条切线间的劣弧长为( ) A B 2 C 4 D 64若三点A(2,2),B(a,0),C(0,b)(a,b均不为0)共线,则的值等于 5设直线axy3=0与圆(x1)2(y2)2=4有两个不同的交点A,B,且弦

6、AB的长为2,则a等于 6光线经过点A(1,),经直线l:xy1=0反射,反射线经过点B(1,1)(1)求入射线所在的方程;(2)求反射点的坐标 7在ABC中,BC边上的高所在的直线方程为x2y1=0,A的平分线所在直线方程为y=0,若B点的坐标为(1,2),求点A和点C的坐标ABCxyO 8过圆O:x2y2=4与y轴正半轴的交点A作这个圆的切线l,M为l上任意一点,过M作圆O的另一条切线,切点为Q,当点M在直线l上移动时,求MAQ垂心H的轨迹方程B组1已知两定点A(2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于 ( )A B4 C8 D92和x

7、轴相切,且与圆x2y2=1外切的圆的圆心的轨迹方程是 ( ) Ax2=2y1 Bx2=2y1 Cx2=2y1 Dx2=2|y|13设直线的方程是,从1,2,3,4,5这五个数中每次取两个不同的数作为A、 B的值,则所得不同直线的条数是( )A20B19C18D164设直线和圆相交于点A、B,则弦AB的垂直平分线方程是 .5已知圆M:(xcos)2(ysin)2=1,直线l:y=kx,下面四个命题A对任意实数k和,直线l和圆M都相切;B对任意实数k和,直线l和圆M有公共点;C对任意实数,必存在实数k,使得直线l和圆M相切;D对任意实数k,必存在实数,使得直线l和圆M相切其中真命题的代号是 (写出

8、所有真命题的代号)6已知点A,B的坐标为(3,0),(3,0),C为线段AB上的任意一点,P,Q是分别以AC,BC为直径的两圆O1,O2的外公切线的切点,求PQ中点的轨迹方程7已知ABC的顶点A(1,4),且B和C的平分线分别为lBT:y1=0,lCK:xy1=0,求BC边所在直线的方程8设a,b,c,都是整数,过圆x2y2=(3a1)2外一点P(b3b,c3c)向圆引两条切线,试证明:过这两切点的直线上的任意一点都不是格点(纵横坐标均为整数的点)115直线与圆的综合应用【典型例题】例1 (1)A提示:用点到直线的距离公式(2)C提示:依据圆心和半径判断(3)A提示:将直线与圆相切转化成关于a

9、b的等量关系(4)18或8提示:用点到直线的距离公式,注意去绝对值符号时的两种可能情况(5)提示:过圆心(2,0)与点(1,)的直线m的斜率是,要使劣弧所对圆心角最小,只需直线l与直线m垂直例2、设圆的方程为(xa)2(yb)2=r2, 点A(2,3)关于直线x2y=0的对称点仍在圆上,说明圆心在直线x2y=0上,a2b=0,又(2a)2(3b)2=r2,而圆与直线xy1=0相交的弦长为2,故r2()2=2,依据上述方程解得:或所求圆的方程为(x6)2(y3)2=52,或(x14)2(y7)2=224例3、设切点为N,则|MN|2=|MO|2|ON|2=|MO|21,设M(x,y),则,整理得

10、(21)(x2y2)4x(142)=0当=1时,表示直线x=;当1时,方程化为,它表示圆心在,半径为的一个圆例4、(1)设出直线方程的截距式,用点到直线的距离等于1,化减即得;(2)设AB中点M(x,y),则a=2x,b=2y,代入(a2)(b2)=2,得(x1)(y1)=(x1,y1);(3)由(a2)(b2)=2得ab2=2(ab)4,解得2(2不合,舍去),当且仅当a=b时,ab取最小值64,AOB面积的最小值是32【课内练习】1A提示:依据圆心到直线的距离求直线的斜率 2D提示:求圆心关于原点的对称点3C.提示:画张图看,或考虑有关字母替代规律 4A提示:圆心在直线l2上50k提示:直

11、接用点到直线的距离公式或用法6提示:求弦所对圆心角72xy10=0提示:所求直线上任意一点(x,y)关于(2,3)的对称点(4x,6y)在已知直线上82x11y16=0提示:求出两直线的交点,再求一个特殊点关于l的对称点,用两点式写l2的方程;或直接设l2上的任意一点,求其关于l的对称点,对称点在直线l1上求对称点时注意,一是垂直,二是平分9(1)提示:切线在x轴,y轴上的截距的绝对值相等,切线的斜率是1分别依据斜率设出切线的斜率,用点到直线的距离公式,或法,解得切线的方程为:xy3=0, xy1=0, xy5=0, xy1=0(2)将圆的方程化成标准式(x1)2(y2)2=2,圆心C(1,2

12、),半径r=,切线PM与CM垂直,|PM|2=|PC|2|CM|2,又|PM|=|PO|,坐标代入化简得2x14y13=0|PM|最小时即|PO|最小,而|PO|最小即P点到直线2x14y13=0的距离,即从而解方程组,得满足条件的点P坐标为(,)10(1)由题意设P(x0,y0)在圆外,切线l:yy0=k(xx0),(x0210)k22x0y0ky0210=0由k1k2k1k2=1得点P的轨迹方程是xy2=0(2)P(x0,y0)在直线xy=m上,y0=mx0,又PAPB,k1k2=1,即:x02y02=20,将y0=mx0代入化简得,2x022mx0m220=00,2m2,又x02y021

13、0恒成立,m2,或m2m的取值范围是2,2(2,2115直线与圆的综合应用A组1B提示:用点到直线的距离公式或用法 2A提示:先求出向左平移后直线的方程,再用点到直线的距离公式3B提示:考虑切线的斜率及劣弧所对圆心角4提示:由三点共线得两两连线斜率相等,2a2b=ab,两边同除以ab即可50提示:依据半径、弦长、弦心距的关系求解6(1)入射线所在直线的方程是:5x4y2=0;(2)反射点(,)提示:用入射角等于反射角原理7点A既在BC边上的高所在的直线上,又在A的平分线所在直线上,由 得A(1,0)kAB=1又A的平分线所在直线方程为y=0kAC=1AC边所在的直线方程为 y=(x1) 又kB

14、C=2, BC边所在的直线方程为 y2=2(x1) 联列得C的坐标为(5,6)8设所求轨迹上的任意一点H(x,y),圆上的切点Q(x0,y0)QHl,AHMQ,AHOQ,AQQH又|OA|=|OQ|,四边形AOQH为菱形x0=x,y0=y2点Q(x0,y0)在圆上,x02y02=4H点的轨迹方程是:x2(y2)2=4(x0)B组1B提示:直接将动点坐标代如等式,求得点的轨迹是一个以(2,0)为圆心,2为半径的圆2D提示:设圆心(x,y),则3C提示:考虑斜率不相等的情况4提示:弦的垂直平分线过圆心5 B,D提示:圆心到直线的距离=|sin()|16作MCAB交PQ于M,则MC是两圆的公切线|M

15、C|=|MQ|=|MP|,M为PQ的中点设M(x,y),则点C,O1,O2的坐标分别为(x,0),(,0),( ,0)连O1M,O2M,由平面几何知识知O1MO2=90|O1M|2|O2M|2=|O1O2|2,代入坐标化简得:x24y2=9(3x3)7BT,CK分别是B和C的平分线,点A关于BT,CK的对称点A,A必在BC所在直线上,所以BC的方程是x2y3=08线段OP的中点坐标为(b3b),(c3c),以OP为直径的圆的方程是x(b3b)2y(c3c)2= (b3b)2(c3c)2将x2y2=(3a1)2代入得:(b3b)x(c3c)y=(3a1)2 这就是过两切点的切线方程因b3b=b(b1)(b1),它为三个连续整数的乘积,显然能被整除同理,c3c也能被3整除于是(3a1)2要能被3整除,3a1要能被3整除,因a是整数,故这是不可能的从而原命题得证

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文((完整版)直线和圆基础习题和经典习题加答案.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|