(完整版)数列证明题型总结(教师版)附答案.doc

上传人(卖家):2023DOC 文档编号:5868632 上传时间:2023-05-12 格式:DOC 页数:25 大小:243.50KB
下载 相关 举报
(完整版)数列证明题型总结(教师版)附答案.doc_第1页
第1页 / 共25页
(完整版)数列证明题型总结(教师版)附答案.doc_第2页
第2页 / 共25页
(完整版)数列证明题型总结(教师版)附答案.doc_第3页
第3页 / 共25页
(完整版)数列证明题型总结(教师版)附答案.doc_第4页
第4页 / 共25页
(完整版)数列证明题型总结(教师版)附答案.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、一、解答题 :1在数列中,a11,an12an2n.()设bn,证明:数列是等差数列;()求数列的前n项的和Sn.【答案】()因为bn1bn1所以数列bn为等差数列()因为bnb1(n1)1n所以ann2n1所以Sn120221n2n12Sn121222n2n两式相减得Sn(n1)2n12在数列an中,a1,an1an.()设bn2nan,证明:数列bn是等差数列;()求数列an的前n项和Sn.【答案】()由an1an,得2n1an12nan1bn1bn1,则bn是首项b11,公差为1的等差数列故bnn,an.()Sn123(n1)nSn123(n1)n两式相减,得:Sn1Sn23数列an的各

2、项均为正数,前n项和为Sn,且满足4Sn(an1)2(nN*)()证明:数列an是等差数列,并求出其通项公式an;()设bnan2an(nN*),求数列bn的前n项和Tn.【答案】()n1时,4a1(a11)2a2a110,即a11n2时,4an4Sn4Sn1(an1)2(an11)2aa2an2an1aa2an2an10(anan1)(anan1)20an0anan12故数列an是首项为a11,公差为d2的等差数列,且an2n1(nN*)()由()知bnan2an(2n1)22n1Tnb1b2bn(121)(323)(2n1)22n113(2n1)(212322n1)n2n24数列an的各项

3、均为正数,前n项和为Sn,且满足2an1(nN*)()证明:数列an是等差数列,并求出其通项公式an;()设bnan2n(nN*),求数列bn的前n项和Tn.【答案】()由2an1(nN*)可以得到4Sn(an1)2(nN*) n1时,4a1(a11)2a2a110,即a11n2时,4an4Sn4Sn1(an1)2(an11)2aa2an2an1aa2an2an10(anan1)(anan1)20an0anan12故数列an是首项为a11,公差为d2的等差数列,且an2n1(nN*)()由()知bnan2n(2n1)2nTn(121)(322)(2n3)2n1(2n1)2n则2Tn(122)(

4、323)(2n3)2n(2n1)2n1两式相减得:Tn(121)(222)(22n)(2n1)2n122(2n1)2n1(32n)2n16Tn(2n3)2n16(或Tn(4n6)2n6)5已知数列an,其前n项和为Snn2n(nN*)()求a1,a2;()求数列an的通项公式,并证明数列an是等差数列;()如果数列bn满足anlog2bn,请证明数列bn是等比数列,并求其前n项和Tn.【答案】()a1S15,a1a2S222213,解得a28.()当n2时,anSnSn1n2(n1)2n(n1)(2n1)3n2.又a15满足an3n2,an3n2(nN*)anan13n23(n1)23(n2,

5、nN*),数列an是以5为首项,3为公差的等差数列()由已知得bn2an(nN*),2an1an238(nN*),又b12a132,数列bn是以32为首项,8为公比的等比数列Tn(8n1)6已知函数f(x),数列an满足:a1,an1f(an)()求证:数列为等差数列,并求数列an的通项公式;()记Sna1a2a2a3anan1,求证:Sn.【答案】证明:()an1f(an),即,则成等差数列,所以(n1)(n1),则an.()anan18,Sna1a2a2a3anan188.7已知数列an的前三项依次为2,8,24,且an2an1是等比数列()证明是等差数列;()试求数列an的前n项和Sn的

6、公式【答案】()a22a14,a32a28,an2an1是以2为公比的等比数列an2an142n22n.等式两边同除以2n,得1,是等差数列()根据()可知(n1)1n,ann2n.Sn12222323n2n,2Sn122223(n1)2nn2n1.得:Sn222232nn2n1n2n12n12n2n1,Sn(n1)2n12.8已知数列an的各项为正数,前n项和为Sn,且满足:Sn(nN*)()证明:数列S是等差数列;()设TnSSSS,求Tn.【答案】()证明:当n1时,a1S1,又Sn(nN*),S1,解得S11.当n2时,anSnSn1,Sn,即SnSn1,化简得SS1,S是以S1为首项

7、,1为公差的等差数列()由()知Sn,TnSSS,即Tn12(n1)n.得Tn1(n1)n.得Tnnn1n1,Tn2.9数列an满足a11,an11(nN*),记Snaaa.()证明:是等差数列;()对任意的nN*,如果S2n1Sn恒成立,求正整数m的最小值【答案】()证明:4(n1)44n3,即是等差数列()令g(n)S2n1Sn.g(n1)g(n)0,g(n)在nN*上单调递减,g(n)maxg(1).恒成立m,又mN,正整数m的最小值为10.10已知数列an是首项a1,公比为的等比数列,设bn15log3ant,常数tN*.()求证:bn为等差数列;()设数列cn满足cnanbn,是否存

8、在正整数k,使ck1,ck,ck2成等比数列?若存在,求k,t的值;若不存在,请说明理由【答案】()证明:an3,bn1bn15log35,bn是首项为b1t5,公差为5的等差数列()cn(5nt)3,令5ntx,则cnx,cn1(x5)3,cn2(x10)3,若ccn1cn2,则(x3)2(x5)3(x10)3,化简得2x215x500,解得x10或(舍),进而求得n1,t5,综上,存在n1,t5适合题意11在数列 an中,a11,an12an2n1.()设bnan1an2,(nN*),证明:数列bn是等比数列;()求数列an的通项an.【答案】()由已知an12an2n1得an22an12

9、n3,得an2an12an12an2设an2an1c2(an1anc)展开与上式对比,得c2因此,有an2an122(an1an2)由bnan1an2,得bn12bn,由a11,a22a135,得b1a2a126,故数列bn是首项为6,公比为2的等比数列()由()知,bn62n132n则an1anbn232n2,所以ana1(a2a1)(a3a2)(anan1)1(3212)(3222)(32n12)13(222232n1)2(n1)an32n2n3,当n1时,a1321213651,故a1也满足上式故数列an的通项为an32n2n3(nN*)12在数列an中,a1,anan1(nN*且n2)

10、()证明:an是等比数列;()求数列an的通项公式;()设Sn为数列的前n项和,求证Sn.【答案】()由已知,得是等比数列()设Anan,则A1a11,且q则An()n,an,可得an()Sn()()()13已知数列an满足a12,an12ann1(nN*)()证明:数列ann是等比数列,并求出数列an的通项公式;()数列bn满足:bn(nN*),求数列bn的前n项和Sn.【答案】()证法一:由an12ann1可得an1(n1)2(ann),又a12,则a111,数列ann是以a111为首项,且公比为2的等比数列,则ann12n1,an2n1n.证法二:2,又a12,则a111,数列ann是以

11、a111为首项,且公比为2的等比数列,则ann12n1,an2n1n.()bn,bnSnb1b2bn2()2n()nSn()22()3(n1)()nn()n1由,得Sn()2()3()nn()n1n()n11(n2)()n1,Sn2(n2)()n.14在数列an中,a11,2nan1(n1)an,nN*.()设 bn,证明:数列bn是等比数列;()求数列an的前n项和Sn.【答案】()因为,所以bn是首项为1,公比为的等比数列()由()可知,即an,Sn1,上式两边乘以,得Sn,两式相减,得Sn1,Sn2,所以Sn415设数列an的前n项和为Sn,且Sn(1)an,其中1,0.()证明:数列a

12、n是等比数列;()设数列an的公比qf(),数列bn满足b1,bnf(bn1)(nN*,n2),求数列bn的通项公式【答案】()由Sn(1)anSn1(1)an1(n2),相减得:ananan1,(n2),数列an是等比数列()f(),bn1,是首项为2,公差为1的等差数列;2(n1)n1,bn.16在等差数列an中,a1030,a2050.()求数列an的通项an;()令bn2an10,证明:数列bn为等比数列;()求数列nbn的前n项和Tn.【答案】()由ana1(n1)d,a1030,a2050,得方程组,解得a112,d2.an12(n1)22n10.()由()得bn2an1022n1

13、01022n4n,4bn是首项是4,公比q4的等比数列()由nbnn4n得:Tn14242n4n4Tn142(n1)4nn4n1相减可得:3Tn4424nn4n1n4n1Tn17已知an是等差数列,其前n项和为Sn,已知a311,S9153,()求数列an的通项公式;()设anlog2bn,证明bn是等比数列,并求其前n项和Tn.【答案】() 解得:d3,a15, an3n2 ()bn2an,2an1an238,bn是公比为8的等比数列又b12a132, Tn(8n1)18在数列an中,a13,an2an1n2(n2,且nN*)()求a2,a3的值;()证明:数列ann是等比数列,并求an的通

14、项公式;()求数列an的前n项和Sn.【答案】()a13,an2an1n2(n2,且nN*),a22a1226,a32a23213.()证明:2,数列ann是首项为a114,公比为2的等比数列ann42n12n1,即an2n1n,an的通项公式为an2n1n(nN*)()an的通项公式为an2n1n(nN*),Sn(2223242n1)(123n)2n2.19已知数列an满足a12,an13an2(nN*)()求证:数列an1是等比数列;()求数列an的通项公式【答案】()证明:由an13an2得an113(an1),从而3,即数列an1是首项为3,公比为3的等比数列()由()知,an133n

15、13nan3n1.20已知数列an满足a12,an14an2n1,Sn为an的前n项和()设bnan2n,证明数列bn是等比数列,并求数列an的通项公式;()设Tn,n1,2,3,证明:i.【答案】()因为bn1an12n1(4an2n1)2n14(an2n)4bn,且b1a124,所以bn是以4为首项,以q4为公比的等比数列所以bnb1qn14n,所以an4n2n.()Sna1a2an(4424n)(2222n)(4n1)2(2n1)(2n1)232n12(2n11)(2n12)(2n11)(2n1),所以Tn,因此i的n的最小值【答案】()证明:b1S1320,Sn1SnSn3n,即Sn1

16、2Sn3n,20,所以bn是等比数列()由()知bn2n,则cn,Tn,Tn,n2 011,即nmin2 012.25已知数列an满足:a11,an1(nN*)()求证:数列是等比数列;()若1,且数列bn是单调递增数列,求实数的取值范围【答案】()证明:1,12,120,所以数列是等比数列()12n,an,12n,bn12n(n),bn2n1(n1)(n2),b1适合,所以bn2n1(n1)(nN*),由bn1bn得2n1(n1)2n(n),n2,(n2)min3,的取值范围为|2 010的n的最小值【答案】()an13an2an1(n2),(an1an)2(anan1)(n2)a12,a2

17、4,a2a120,anan10,故数列an1an是首项为2,公比为2的等比数列,an1an(a2a1)2n12n,an(anan1)(an1an2)(an2an3)(a2a1)a12n12n22n321222n(n2)又a12满足上式,an2n(nN*)()由()知bn222,Sn2n2n2n22n2.由Sn2 010得:2n22 010,即n1 006,因为n为正整数,所以n的最小值为1 006.27已知数列an的前n项和为Sn,满足Sn+2n=2an(I)证明:数列an+2是等比数列,并求数列an的通项公式an;()若数列bn满足bn=log2(an+2),求数列的前n项和Tn【答案】(I

18、)证明:由Sn+2n=2an,得Sn=2an2n,当nN*时,Sn=2an2n,当n=1时,S1=2a12,则a1=2,当n2时,Sn1=2an12(n1),得an=2an2an12,即an=2an1+2,an+2=2(an1+2),an+2是以a1+2为首项,以2为公比的等比数列,()解:,bn=n(n+1),=1+=1=【解析】考点: 数列的求和;等比数列的通项公式专题: 综合题分析: (I)由Sn+2n=2an,得Sn=2an2n,由此利用构造法能够证明数列an+2是等比数列,并求出数列an的通项公式an()由,得,由此利用错位相减法能够求出数列的前n项和Tn28数列an中,a11,当n

19、2时,其前n项的和Sn满足San(Sn1)()证明:数列是等差数列;()设bnlog2,数列bn的前n项和为Tn,求满足Tn6的最小正整数n.【答案】()San(Sn1),S(SnSn1)(Sn1)(n2),SnSn1Sn1Sn,即1,是1为首项,1为公差的等差数列()由()知Sn,bnlog2,Tnlog2log26,(n2)(n1)128,nN*,n10,所以满足Tn6的最小正整数为1029已知数列an的首项a1=,其中nN+()求证:数列为等比数列;()记Sn=,若Sn100,求最大的正整数n【答案】()证明:,N+),数列为等比数列()解:由()可求得=,若Sn100,则n+1,nma

20、x=99【解析】考点:数列递推式;数列的求和专题:综合题;等差数列与等比数列分析:()利用数列递推式,变形可得,从而可证数列为等比数列;()确定数列的通项,利用等比数列的求和公式求和,即可求最大的正整数n30在数列an中,a12,an14an3n1,nN*.()证明数列ann是等比数列;()设数列an的前n项和Sn,求Sn14Sn的最大值【答案】()证明:由题设an14an3n1,得an1(n1)4(ann),nN*.又a111,所以数列ann是首项为1,且公比为4的等比数列()由()可知ann4n1,于是数列an的通项公式为an4n1n.所以数列an的前n项和Sn.Sn14Sn4(3n2n4),故n1,最大0.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文((完整版)数列证明题型总结(教师版)附答案.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|