1、七年级下册数学期中考试题(答案)一、选择题:本题共12小题,每小题3分,共36分1.20=( ) A.1B.C.2D.2.0.00 000 13用科学记数法表示是( ) A.1.310-5B.1.310-6C.0.13x10-5 D.0.13x10-63.下列运算中,正确的是( ) A.a2+2a2=3a4B.b2b3=b6C.(x3)3=x6D.y5y2=y34.在同一平面内,( ) A.不重合的两条直线要么平行要么相交B.直角三角形的两锐角互补C.两条直线平行,同旁内角相等D.垂直于同一条直钱的两直线互相垂直5.下列各组长度(单位:cm)的三条线段能组成三角形的是( ) A.1,1,2B.
2、1,2,4C.2,3,5D.3,4,56.三角形的重心是三条( ) A.中线的交点B.角平分线的交点C.高线的交点D.垂线的交点7.若a-b=3,ab=1,则a2+b2=( ) A.7B.9C.11D.138.佳佳从家坐车去书店,购书后骑单车回家,则她离家的距离S(m)与时间t(min)的关系的图象大致是( ) A.B.C.D.9.若(x+a)与(x+b)的乘积中不含x的一次项,则 的值是( ) A.0B.1C.-1D.210.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下关系,则()x(kg)012345y(cm)66.577.588A.y随x的增大而增大B.质量每增加1kg,
3、度增加0.5cmC.不挂物体时,长度为6cmD.质量为6kg时,长度为8.cm11.直线ab,一块含60角的直角三角尺(A=60)按如图所示放置若1=45,则2=( ) A.100B.105C.120D.13512.A的两边与B的两边分别平行,A的度数比B的度数的2倍少30,则A=( ) A.30B.60C.60或70D.30或110二、填空题:本题共4小题,每小题3分,共12分13.如图,ABCD,A=30,E=90,则C= _。 14.某地的温度T()与海拔高度h(km)之间的关系如下所示: 要算出海拔高度为6km时该地的温度,适宜用第_种形式。 15.A的余角是60,则A的补角是_。 1
4、6.佳佳用三根长度均为整数的木棒搭一个等腰三角形,其中一根木棒长为5,则另两根木棒最短可以为_ 三、解答题:本题共7小题,共52分17. (1)计算:(2x+y)(x-y) (2)用乘法公式计算:98102 18.先化简,再求值:(2a+b)2-(2a+b)(2a-b)-1,其中a=-1,b=1。 19.如图,ABCD,点E是射线CD上一点 (1)在射线AB上取点F,利用尺规作图,使FED=C(用黑色水笔描粗作图痕迹,不要求写作法); (2)AFE与C相等吗?说明理由 20.如图,ABC=ADE,1+2=180, BEC=80,将求CGF的过程填写完整 解:因为ABC=ADE,所以BC()所以
5、2=又因为1+2=180,所以1+=180所以BEGF()所以CGF=()因为CEB=80,所以CGF= 21.出租车车费计价标准为:3km以内(含3km)8元,超出3km的部分1.6元/km (1)佳佳乘出租车行驶4km,应付车费多少元? (2)佳佳付车费16元,那么出租车行驶了多少km? (3)直接写出车费y(元)与行驶路程x(km)之间的关系式(其中x3) 22.水池有若干个进水口与出水口,每个口进出水的速度如图1、图2所示,只开1个进水口持续15小时可将水池注满 (1)某段时间内蓄水量V(m3)与时间t(h)的关系如图3所示,03时只开2个进水口,3b时只开1个进水口与1个出水口,9c
6、只开1个出水口,求证:a=b+c (2)若同时开2个出水口与1个进水口,多久可将满池的水排完? 23. (1)求证:三角形三个内角的和等于180 (2)阅读材料并回答问题: 如图,把ABC的一边BC延长,得到ACD像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的“外角”,在每个顶点处取这个三角形的一个外角,它们的和叫做这个三角形的“外角和”补全图形并求ABC的“外角和”答案解析部分一、选择题:本题共12小题,每小题3分,共36分 1.【答案】 A 【考点】有理数的乘方 【解析】【解答】20=1 故答案为:A 【分析】根据任何数(底数不为零)的零次幂为1可求解。2.【答案】 B 【考点
7、】科学记数法表示绝对值较小的数 【解析】【解答】科学记数法表示为1.310-6故答案为:B【分析】根据科学记数法的定义可求解。3.【答案】 D 【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用 【解析】【解答】 y5y2=y3正确,符合题意 故答案为:D 【分析】根据同底数幂的除法法则,可选出结果。4.【答案】 D 【考点】平面中直线位置关系 【解析】【解答】根据垂直于同一条直钱的两直线互相垂直,可判断D正确 故答案为:D 【分析】根据垂直的定义,可选出结果。5.【答案】 D 【考点】三角形三边关系 【解析】【解答】1+1=2,A不正确 1+24,B不正确 2+3=5,C不正确 3
8、+45,5-43,D正确 故答案为:D 【分析】根据三角形三边的关系,可计算得到组成三角形的三条线段。6.【答案】 A 【考点】三角形的角平分线、中线和高 【解析】【解答】三角形的重心为三条中线的交点 故答案为:A 【分析】根据三角形重心的定义可选出答案。7.【答案】 C 【考点】完全平方公式及运用 【解析】【解答】a2+b2=(a-b)2+2ab=9+2=11故答案为:C【分析】根据完全平方公式可进行化简求值。8.【答案】 C 【考点】函数的图象 【解析】【解答】根据坐车的速度大于骑单车,并且买书的时间内路程不变 可得知C为正确图像 故答案为:C 【分析】根据路程与时间的关系,可选出正确图像
9、。9.【答案】 C 【考点】方程的定义及分类 【解析】【解答】 (x+a)(x+b)=x2+(a+b)x+ab 不含x的一次项 a+b=0,a=-b =-1 故答案为:C 【分析】根据原式不含x的一次项,可得到a、b的关系,求值即可。10.【答案】 C 【考点】函数的图象 【解析】【解答】由x=0时,y=6, 不挂物体时,弹簧长度为6cm 故答案为:C 【分析】根据x、y对应的弹簧长度与所挂物体的重量关系,可选出正确的选项。11.【答案】 B 【考点】同位角、内错角、同旁内角,平行线的性质 【解析】【解答】1=3=45,ABC=30 2=105 故答案为:B 【分析】根据内错角和三角形的内角和
10、,可计算得出2的度数。12.【答案】 D 【考点】根据数量关系列出方程 【解析】【解答】设A=B=x,可列出x=2x-30 解得x=30 A+B=180,A=2B-30 可解得A=110 故答案为:D 【分析】根据角两条边平行,两个角可能是相等或互补,可列出式子,求解。二、填空题:本题共4小题,每小题3分,共12分 13.【答案】 60 【考点】同位角、内错角、同旁内角,平行线的性质 【解析】【解答】A=30,C=90-A=60 【分析】根据平行线所分的内错角相等,可得出结论。14.【答案】 三【考点】函数的表示方法 【解析】【解答】用第三种形式,将h=6代入解析式,可计算出T 【分析】用解析
11、式法,可直接计算出该海拔的温度。15.【答案】 150【考点】余角、补角及其性质 【解析】【解答】A=90-60=30,A的补角=180-30=150 【分析】根据余角补角的性质,可计算得出角的度数。16.【答案】 6【考点】等腰三角形的性质 【解析】【解答】若5为腰长,即另外两根为5+1=6 若5为底,两腰最短可为3+3=6 两根木棒最短为6 【分析】根据边长为正数以及三角形三边的关系,可求解。三、解答题:本题共7小题,共52分 17.【答案】 (1)(2x+y)(x-y)=2x2-2xy+xy-y2=2x2-y2-xy (2)98102 =(100-2)(100+2)=1002-22=99
12、96 【考点】平方差公式及应用,合并同类项法则及应用 【解析】【分析】根据合并同类项、平方差公式,可进行化简计算。18.【答案】 (2a+b)2-(2a+b)(2a-b)-1=(2a+b)(2a+b-2a+b)-1=(2a+b)2b-1将a=-1,b=1代入可得出-3 【考点】代数式求值,提公因式法因式分解 【解析】【分析】将原式进行提取公因式,因式分解到最简,再将a、b的值代入,计算得出结果。19.【答案】 (1)(2)相等由题意可知,四边形ACEF为平行四边形所以C=AFE 【考点】平行线的性质,作图-平行线 【解析】【分析】根据平行四边形的性质可进行画图计算。20.【答案】 DE同位角相
13、等,两直线平行33同旁内角互补,两直线平行CEB两直线平行,同位角相等80 【考点】同位角、内错角、同旁内角,平行线的判定与性质 【解析】【分析】根据平行线的判定性质和内错角、同位角、同旁内角的关系,可填入结果。21.【答案】 (1)8+1.6=9.6元 (2)设出租车行驶xkm(x大于3)8+(x-3)1.6=16解得x=8出租车行驶8km (3)y=(x-3)1.6+8 【考点】函数的表示方法 【解析】【分析】根据出租车车费跟路程的关系,可得出结论。22.【答案】 (1)a=123=6(a-4)=(b-3)(2-1),解得b=5(c-9)2=4,解得c=11a+b=c (2)水池体积为15
14、m设x个小时可排完15+x=22x3x=15x=55个小时可以排完 【考点】通过函数图象获取信息并解决问题 【解析】【分析】根据所给的信息,利用函数图像,可进行计算。23.【答案】 (1)做出平行线MNBCMAB=B,NAC=C (同位角相等)MAB+BAC+NAC=180B+BAC+C=180三角形的内角和为180 (2)ACD+ABC=180ABC+BAC+ACB=180ACD=BAC+ACB三角形的外角等于与它不相邻的两个内角和 【考点】三角形内角和定理,三角形的外角性质 【解析】【分析】根据同位角和平角的定义可求解;根据三角形的内角和以及平角的定义可求解。七年级下学期期中考试数学试题【
15、含答案】一、选择题(本大题15小题,每小题3分,满分45分;在每个小题给出代号为A、B、C、D四个结论,其中只有一个正确,把你认为正确的结论代号写在该题后的括号内) 1、下列方程中是一元一次方程的是( )A、 B、 C、 D、2、下列解方程过程中,变形正确的是( )A、由5x1=3,得5x=31 B、由+1=+12,得+1=+12C、由,得 D、由=1,得2x3x=13、在等式中,当时,;当时,则这个等式是( ) A、 B、 C、 D、4、已知是方程组的解,则、的值为( )A、 B、 C、 D、5、某商品涨价30%后欲恢复原价,则必须下降的百分数约为( )A、20% B、21% C、22% D
16、、23%6、 若方程组的解x和y的值相等,则k=( ) A、1 B、2 C、3 D、47、 已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江、黄河的长分别是千米,千米,则下列方程组中正确的是 ( )A、 B、 C、 D、8 、 已知x +4y3z = 0,且4x5y + 2z = 0,x:y:z 为( )A、1:2:3 B 、1:3:2 C、2:1:3 D、3:1:29、若不等式组无解,则m的取值范围是( )A、 B、 C、 D、10、对于任意有理数a,b,c,d,规定,如果,那么x的取值范围是( )A.x-3 B.x-3 C.x-511、如果axa的解是x1,
17、那么a必须满足 ( )A、 a1 C、a-1 D、a-112、如果不等式组的解集是,则n的取值范围是( ) A、n4 B Cn4 D13、不等式2(x2)x2的非负整数解的个数为( )A、1个 B、2个 C、3个 D、4个14、不等式组的解集是( )A、x1 B、x-4 C、-4x1 D、x115、不等式组的解集是x6m3,则m的取值范围是( )A、m0 B、m0 C、m0 D、m0二、填空题( 本大题10小题,总分30分;)16、若关于x、y的方程xm-12y3+n5是二元一次方程,则m ,n 17、已知方程的解为,则 18、方程组的解是 19、若,则20、如图,用不等式表示公共部分x的范围
18、_ _21、已知关于x的方程3k5x=9的解是非负数,则k的取值范围是_.22、已知ab,则4a+5 4b+5(填、=或)23、已知关于x的不等式3x-a0的正整数解是1,2,3,则a的取值范围 24、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,则春游的总人数是 人;25、甲乙两人在400米的环形跑道上跑步,若同向跑步每隔3分钟相遇一次,若反向跑步,每隔40秒相遇一次,则甲的速度各是 (甲比乙快)三、解答题26、解下列各题(每题5分,共30分)(1) (2) (3) (4) 解不等式2(x+2)-6-5(x-4) (5) (6) 27、(8分
19、)已知方程组 与 有相同的解,则的值? 28、(8分)某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应分配多少人生产螺栓,多少人生产螺母,才能使一个螺栓配2个螺母刚好配套? 29、(9分)抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时内把一批抗洪物质从物质局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物质局仓库离水库有多远? 30、(10分) 已知关于x,y的方程组的解是正数(1)求a的取值范围(2)化简:|4a+5|-|a-4
20、| 31、(10分)今年4月,李大叔收获洋葱30吨,黄瓜13吨。现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装洋葱和黄瓜各2吨。李大叔安排甲、乙两种货车时共有几种方案,请你帮助设计出来;若甲种货车每辆付运费2000元,乙种货车每辆付运费1300元,请你帮助李大叔算一算应选哪种方案,才能使运费最少?最少运费是多少? 参考答案1.D.2.B.3.B.4.B.5.D.6.B.7.C.8.B.9.B.10.A.11.A.12.C.13.C.14.C.15.A.16.2,-2;17.1.18.x=-2,y=6.19.0.20.-3x
21、2.21.k-3.22.23.9a12.24.534.25.m/s,m/s;26.(1)x=-15;(2)x=1,y=1;(3)-4.5x0,y0,所以-1a5.(2)原式=3a+9;31.解:(1)设李大叔安排甲货车x辆,则乙货车为(10-x)辆,据题意得:4x+2(10-x)30,x+2(10-x)13,解得5x7,x应是整数,x=5或x=6或x=7 有三种运输方案:方案一,安排5辆甲货车,5辆乙货车 方案二,安排6辆甲货车,4辆乙货车; 方案三,安排7辆甲货车,3辆乙货车;(2)甲货车的运费大于乙货车运费,所以选方案一的费用最少 其运费为20005+13005=16500(元)答:李大叔
22、应选方案一,才能使运费最少,最少运费是16500元七年级下册数学期中考试试题【含答案】一、填空题(本大题共6小题,共18.0分)1. 16的平方根是_2. 命题“两直线平行,内错角相等”的题设是_,结论是_3. 要使有意义,则x的取值范围是_4. 若点M(a-3,a+4)在x轴上,则点M的坐标是_5. 把命题“对顶角相等”改写成“如果那么”的形式:_6. 的相反数是_,|-2|=_,=_二、选择题(本大题共8小题,共24.0分)7. 在平面直角坐标系中,点P(-3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 在实数,0.121221221,3.1415926,-中
23、,无理数有()A. 2个B. 3个C. 4个D. 5个9. 如图所示,点E在AC的延长线上,下列条件中能判断ABCD的是()A. B. C. D. 10. 下列式子中,正确的是()A. B. C. D. 11. 下列说法正确的是()A. 是的平方根B. 3是的算术平方根C. 的平方根是2D. 8的平方根是12. 下列命题中正确的是()A. 有限小数不是有理数B. 无限小数是无理数C. 数轴上的点与有理数一一对应D. 数轴上的点与实数一一对应13. 中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”通过平移,可将图中的吉祥物“海宝”移动到图()A. B. C. D. 14. 如图,
24、在正方形网格中,A点坐标为(-1,0),B点坐标为(0,-2),则C点坐标为()A. B. C. D. 三、计算题(本大题共3小题,共18.0分)15. 求x值:(1)(x-1)2=25(2)125x3=816. 如图,直线AB、CD相交于O,OD平分AOF,OECD于点O,1=50,求COB、BOF的度数17. 已知2a-7的平方根是3,2a+b-1的算术平方根是4,求a+b的立方根四、解答题(本大题共6小题,共48.0分)18. 计算:-19. 如图,EFAD,1=2,BAC=70将求AGD的过程填写完整EFAD,(_)2=_(两直线平行,同位角相等)又1=2,(_)1=3(_)ABDG(
25、_)BAC+_=180(_)又BAC=70,(_)AGD=_20. 如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题: (1)写出ABC三个顶点的坐标;(2)画出ABC向右平移6个单位后的图形A1B1C1;(3)求ABC的面积。 21. 已知:如图,AEBC,FGBC,1=2,D=3+60,CBD=70(1)求证:ABCD;(2)求C的度数22. 多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示可是她忘记了在图中标出原点和x轴、y轴只知道马场的坐标为(-1,-2),你能帮她建立平面直角坐标系并求出其他各景点的坐
26、标?(图中每个小正方形的边长为1)23. 如图所示,已知ABCD,证明:下列两个图形中P与A,C的关系答案和解析1.【答案】4【解析】解:(4)2=16, 16的平方根是4 故答案为:4根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根2.【答案】两条平行线被第三条直线所截;内错角相等【解析】解:题设:两条平行线被第三条直线所截;结论:内错角相等命题由题设和结论两部分组成题设是已知事项,结论是由已知事项推出的事项命题常常可以写为“如果那么”的形式,如
27、果后面接题设,而那么后面接结论要根据命题的定义来回答3.【答案】x4【解析】解:由题意得:x-40, 解得:x4 故答案为:x4根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解本题考查了二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数4.【答案】(-7,0)【解析】解:M(a-3,a+4)在x轴上, a+4=0, 解得a=-4, a-3=-4-3=-7, M点的坐标为(-7,0) 故答案为(-7,0)根据x轴上的点纵坐标为0,列式求出a的值,然后计算求出横坐标,从而点M的坐标可得本题主要考查了点的坐标,利用x轴上的点纵坐标等于0列式求出a的值是解题的关键5.【答
28、案】如果两个角是对顶角,那么它们相等【解析】解:题设为:对顶角,结论为:相等, 故写成“如果那么”的形式是:如果两个角是对顶角,那么它们相等, 故答案为:如果两个角是对顶角,那么它们相等命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单6.【答案】-;2-;-2【解析】解:的相反数是-,|-2|=2-,=-2,故答案为:-,2-,-2根据只有符号不同的两个数互为相反数,差的绝对值是大数减小数,负数的立方根是负数,
29、可得答案本题考查了实数的性质,只有符号不同的两个数互为相反数,差的绝对值是大数减小数,负数的立方根是负数7.【答案】B【解析】解:点(-3,4)的横纵坐标符号分别为:-,+, 点P(-3,4)位于第二象限 故选:B根据点的横纵坐标特点,判断其所在象限,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键8.【答案】A【解析】解:无理数有,共2个故选:A根据无理数的定义选出即可本题考查了对无理数的应用,注意:无理数是指无限不循环小数9.【答案】B【解析】解:A、3=A,无法
30、得到,ABCD,故此选项错误; B、1=2,根据内错角相等,两直线平行可得:ABCD,故此选项正确; C、D=DCE,根据内错角相等,两直线平行可得:BDAC,故此选项错误; D、D+ACD=180,根据同旁内角互补,两直线平行可得:BDAC,故此选项错误; 故选:B根据平行线的判定分别进行分析可得答案此题主要考查了平行线的判定,关键是掌握平行线的判定定理10.【答案】A【解析】解:A、=-=-2,正确;B、原式=-=-,错误;C、原式=|-3|=3,错误;D、原式=6,错误,故选:A原式各项计算得到结果,即可作出判断此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键11.【答
31、案】B【解析】解:A、负数没有平方根,故选项A错误;B、(-3)2=9,9的算术平方根是3,故选项B正确;C、(-2)2=4的平方根是2,故选项C错误;D、8的平方根是2,故选项D错误故选:BA、B、C、D都根据平方根的定义即可判定本题主要考查了平方根、算术平方根概念的运用如果x2=a(a0),则x是a的平方根若a0,则它有两个平方根,我们把正的平方根叫a的算术平方根若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根12.【答案】D【解析】【分析】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的定义、定理与性
32、质A、根据有理数的定义即可判定;B、根据无理数的定义即可判定;C、D、根据数轴与实数的对应关系即可判定【解答】解:A、有限小数是有理数,故本选项错误;B、无限不循环小数是无理数,无限循环小数是有理数,故本选项错误;C、数轴上的点与实数一一对应,故本选项错误;D、数轴上的点与实数一一对应,故本选项正确故选:D13.【答案】D【解析】解:A、B、C吉祥物“海宝”是原图形通过旋转得到的,因此不是平移,只有D符合要求,是平移 故选:D根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化本题考查了生活中的平移现象,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”
33、,位置改变14.【答案】A【解析】解:A点坐标为(-1,0),B点坐标为(0,-2),建立平面直角坐标系如图所示,点C的坐标为(1,1)故选:A以点A向右1个单位为坐标原点建立平面直角坐标系,然后写出点C的坐标即可本题考查了点的坐标,熟练掌握平面直角坐标系并根据已知点的坐标确定出坐标原点的位置是解题的关键15.【答案】解:(1)(x-1)2=25,x-1=5或x-1=-5,则x=6或x=-4;(2)125x3=8,x3=,则x=【解析】(1)根据平方根的定义得出x-1的值,再计算即可得;(2)将x3的系数化为1,再利用立方根的定义计算可得此题考查了立方根与平方根的定义此题难度不大,注意掌握方程
34、思想的应用16.【答案】解:OECD于点O,1=50,AOD=90-1=40,BOC与AOD是对顶角,BOC=AOD=40OD平分AOF,DOF=AOD=40,BOF=180-BOC-DOF =180-40-40=100【解析】此题利用余角和对顶角的性质,即可求出COB的度数,利用角平分线及补角的性质又可求出BOF的度数此题主要考查了余角,补角及角平分线的定义17.【答案】解:根据题意知2a-7=9、2a+b-1=16,解得:a=8、b=1,=【解析】根据平方根的定义先求出a的值,再根据算术平方根的定义求出b,然后再求出a+b的立方根此题考查了算术平方根和平方根,注意一个正数有两个平方根,它们
35、互为相反数,正的平方根即为它的算术平方根18.【答案】解:原式=2-2+-=0【解析】本题涉及立方根和二次根式化简在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算19.【答案】已知 3 已知 等量代换 内错角相等,两直线平行; AGD 两直线平行,同旁内角互补; 已知 110【解析】解:EFAD(已知), 2=3(两直线平行,同位角相等) 又1=2,(已知) 1=3,(等量代换) ABDG(内错角相等,两直线平行) BAC+AGD=180(两直线平行,同旁