1、一、平行四边形真题与模拟题分类汇编(难题易错题)1如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD的交点,过点O作OEMN于点E(1)如图1,线段AB与OE之间的数量关系为 (请直接填结论)(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转(090),过点 B作BFMN于点F如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由如图3,当点O、B两点分别在直线MN两侧时,此时中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明当正方形ABCD绕点A旋转到如图4的位置时,线段AF、B
2、F与OE之间的数量关系为 (请直接填结论)【答案】(1)AB=2OE;(2)AF+BF=2OE,证明见解析;AFBF=2OE 证明见解析;BFAF=2OE,【解析】试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;(2)过点B作BHOE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,AOB=90,再根据同角的余角相等求出AOE=OBH,然后利用“角角边”证明AOE和OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;过点B作BHOE交OE的延长线
3、于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,AOB=90,再根据同角的余角相等求出AOE=OBH,然后利用“角角边”证明AOE和OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;同的方法可证试题解析:(1)AC,BD是正方形的对角线,OA=OC=OB,BAD=ABC=90,OEAB,OE=AB,AB=2OE,(2)AF+BF=2OE证明:如图2,过点B作BHOE于点HBHE=BHO=90OEMN,BFMNBFE=OEF=90四边形EFBH为矩形BF=EH,E
4、F=BH四边形ABCD为正方形OA=OB,AOB=90AOE+HOB=OBH+HOB=90AOE=OBHAEOOHB(AAS)AE=OH,OE=BHAF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OEAFBF=2OE 证明:如图3,延长OE,过点B作BHOE于点HEHB=90OEMN,BFMNAEO=HEF=BFE=90四边形HBFE为矩形BF=HE,EF=BH四边形ABCD是正方形OA=OB,AOB=90AOE+BOH=OBH+BOHAOE=OBHAOEOBH(AAS)AE=OH,OE=BH,AFBF=AE+EFHE=OHHE+OE=OE+OE=2OEBFAF=2OE,如图4,
5、作OGBF于G,则四边形EFGO是矩形,EF=GO,GF=EO,GOE=90,AOE+AOG=90在正方形ABCD中,OA=OB,AOB=90,AOG+BOG=90,AOE=BOGOGBF,OEAE,AEO=BGO=90AOEBOG(AAS),OE=OG,AE=BG,AEEF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,BFAF=BG+GF(AEEF)=AE+OEAE+EF=OE+OE=2OE,BFAF=2OE2已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF(1)求证:DOEBOF(2)当DOE等于多少度时
6、,四边形BFDE为菱形?请说明理由【答案】(1)证明见解析;(2)当DOE=90时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出DOEBOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案试题解析:(1)在ABCD中,O为对角线BD的中点,BO=DO,EDB=FBO,在EOD和FOB中,DOEBOF(ASA);(2)当DOE=90时,四边形BFDE为菱形,理由:DOEBOF,OE=OF,又OB=OD,四边形EBFD是平行四边形,EOD
7、=90,EFBD,四边形BFDE为菱形考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定3已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P为点D的对应点,再将纸片还原。(I)若点P落在矩形OBCD的边OB上,如图,当点E与点O重合时,求点F的坐标;如图,当点E在OB上,点F在DC上时,EF与DP交于点G,若,求点F的坐标:()若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可)。 【答案】(I)点F的坐标为;点F的坐标为;(II)【解析】
8、【分析】(I)根据折叠的性质可得,再由矩形的性质,即可求出F的坐标;由折叠的性质及矩形的特点,易得,得到,再加上平行,可以得到四边形DEPF是平行四边形,在由对角线垂直,得出 是菱形,设菱形的边长为x,在中,由勾股定理建立方程即可求解;()当O,P,F点共线时OP的长度最短.【详解】解:(I)折痕为EF,点P为点D的对应点四边形OBCD是矩形,点F的坐标为折痕为EF,点P为点D的对应点.四边形OBCD是矩形,;四边形DEPF是平行四边形.,是菱形. 设菱形的边长为x,则,在中,由勾股定理得 解得 点F的坐标为 ()【点睛】此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定
9、理等知识,关键是根据折叠的性质进行解答,属于中考压轴题4如图,ABC中,AD是边BC上的中线,过点A作AEBC,过点D作DEAB,DE与AC、AE分别交于点O、点E,连接EC(1)求证:AD=EC;(2)当BAC=Rt时,求证:四边形ADCE是菱形【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由BAC=90,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:AEBC,DEAB ,四边形ABDE是平行四边形,AE=BD,AD是边BC上的中线,BD=DC,AE=DC,又AEBC,四边形ADC
10、E是平行四边形.(2) 证明:BAC=90,AD是边BC上的中线.AD=CD 四边形ADCE是平行四边形,四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.5如图,ABCD是正方形,点G是BC上的任意一点,DEAG于E,BFDE,交AG于F求证:AF=BF+EF【答案】详见解析.【解析】【分析】由四边形ABCD为正方形,可得出BAD为90,AB=AD,进而得到BAG与EAD互余,又DE垂直于AG,得到EAD与ADE互余,根据同角的余角相等可得出ADE=BAF,利用AAS可得出ABFDAE;利
11、用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.【详解】ABCD是正方形,AD=AB,BAD=90DEAG,DEG=AED=90ADE+DAE=90又BAF+DAE=BAD=90,ADE=BAFBFDE,AFB=DEG=AED在ABF与DAE中, ,ABFDAE(AAS)BF=AEAF=AE+EF,AF=BF+EF点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键6如图,在矩形中,点从边的中点出发,沿着速运动,速度为每秒2个单位长度,到达点后停止运动,点是上的点,设的面积为,点运动的时间为秒,与的函数关系如图所示
12、.(1)图中= ,= ,图中= .(2)当=1秒时,试判断以为直径的圆是否与边相切?请说明理由:(3)点在运动过程中,将矩形沿所在直线折叠,则为何值时,折叠后顶点的对应点落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=、5、.【解析】【分析】(1)由题意得出AB=2BE,t=2时,BE=22=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P在E处,m=AEQ的面积=AQAE=20即可;(2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,设以PQ为直径的圆的圆心为O,作ONBC于N,延
13、长NO交AD于M,则MN=AB=8,OMAB,MN=AB=8,由三角形中位线定理得出OM=AP=3,求出ON=MN-OM=5圆O的半径,即可得出结论;(3)分三种情况:当点P在AB边上,A落在BC边上时,作QFBC于F,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA=PA,AQ=AQ=10,PAQ=A=90,由勾股定理求出AF=6,得出AB=BF-AF=4,在RtABP中,BP=4-2t,PA=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可;当点P在BC边上,A落在BC边上时,由折叠的性质得:AP=AP,证出APQ=AQP,得出AP=AQ=AP=10,在RtABP中
14、,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;当点P在BC边上,A落在CD边上时,由折叠的性质得:AP=AP,AQ=AQ=10,在RtDQA中,DQ=AD-AQ=8,由勾股定理求出DA=6,得出AC=CD-DA=2,在RtABP和RtAPC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可【详解】(1)点P从AB边的中点E出发,速度为每秒2个单位长度,AB=2BE,由图象得:t=2时,BE=22=4,AB=2BE=8,AE=BE=4,t=11时,2t=22,BC=22-4=18,当t=0时,点P在E处,m=AEQ的面积=AQAE=104
15、=20;故答案为8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下: 当t=1时,PE=2,AP=AE+PE=4+2=6,四边形ABCD是矩形,A=90,PQ=,设以PQ为直径的圆的圆心为O,作ONBC于N,延长NO交AD于M,如图1所示:则MN=AB=8,OMAB,MN=AB=8,O为PQ的中点, OM是APQ的中位线,OM=AP=3,ON=MN-OM=5,以PQ为直径的圆不与BC边相切;(3)分三种情况:当点P在AB边上,A落在BC边上时,作QFBC于F,如图2所示:则QF=AB=8,BF=AQ=10,四边形ABCD是矩形,A=B=BCD=D=90,CD=AB=8
16、,AD=BC=18,由折叠的性质得:PA=PA,AQ=AQ=10,PAQ=A=90,AF=6,AB=BF-AF=4,在RtABP中,BP=4-2t,PA=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=;当点P在BC边上,A落在BC边上时,连接AA,如图3所示:由折叠的性质得:AP=AP,APQ=APQ,ADBC,AQP=APQ,APQ=AQP,AP=AQ=AP=10,在RtABP中,由勾股定理得:BP=6, 又BP=2t-4,2t-4=6,解得:t=5;当点P在BC边上,A落在CD边上时,连接AP、AP,如图4所示:由折叠的性质得:AP=AP,
17、AQ=AQ=10,在RtDQA中,DQ=AD-AQ=8,由勾股定理得:DA=6,AC=CD-DA=2,在RtABP和RtAPC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,AP2=22+(22-2t)2,82+(2t-4)2=22+(22-2t)2,解得:t=;综上所述,t为或5或时,折叠后顶点A的对应点A落在矩形的一边上【点睛】四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.7如图,已知矩形ABCD中,E是AD上一点,F是AB上
18、的一点,EFEC,且EFEC(1)求证:AEFDCE(2)若DE4cm,矩形ABCD的周长为32cm,求AE的长【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EFCE,求证AEF=ECD再利用AAS即可求证AEFDCE(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:EFCE,FEC=90,AEF+DEC=90,而ECD+DEC=90,AEF=ECD在RtAEF和RtDEC中,FAE=EDC=90,AEF=ECD,EF=ECAEFDCE(2)解:AEFDCEAE=CDAD=AE+4矩形ABCD的周长为32cm,2(
19、AE+AE+4)=32解得,AE=6(cm)答:AE的长为6cm点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目8如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GEDC于点E,GFBC于点F,连结AG(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,AGF=105,求线段BG的长【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在RtGFC中,利用勾股定理即可证明;
20、(2)作BNAG于N,在BN上截取一点M,使得AM=BM设AN=x易证AM=BM=2x,MN=x,在RtABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BNcos30即可解决问题.试题解析:(1)结论:AG2=GE2+GF2理由:连接CG四边形ABCD是正方形,A、C关于对角线BD对称,点G在BD上,GA=GC,GEDC于点E,GFBC于点F,GEC=ECF=CFG=90,四边形EGFC是矩形,CF=GE,在RtGFC中,CG2=GF2+CF2,AG2=GF2+GE2(2)作BNAG于N,在BN上截取一点M,使得AM=BM设AN=xAGF=
21、105,FBG=FGB=ABG=45,AGB=60,GBN=30,ABM=MAB=15,AMN=30,AM=BM=2x,MN=x,在RtABN中,AB2=AN2+BN2,1=x2+(2x+x)2,解得x=,BN=,BG=BNcos30=考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质9问题情境在四边形ABCD中,BABC,DCAC,过点D作DEAB交BC的延长线于点E,M是边AD的中点,连接MB,ME. 特例探究(1)如图1,当ABC90时,写出线段MB与ME的数量关系,位置关系; (2)如图2,当ABC120时,试探究线段MB与ME的数量关系,并证明你的
22、结论; 拓展延伸(3)如图3,当ABC时,请直接用含的式子表示线段MB与ME之间的数量关系【答案】(1)MBME,MBME;(2)MEMB证明见解析;(3)MEMBtan.【解析】【分析】(1)如图1中,连接CM只要证明MBE是等腰直角三角形即可;(2)结论:EM=MB只要证明EBM是直角三角形,且MEB=30即可;(3)结论:EM=BMtan证明方法类似;【详解】(1) 如图1中,连接CMACD=90,AM=MD,MC=MA=MD,BA=BC,BM垂直平分AC,ABC=90,BA=BC,MBE=ABC=45,ACB=DCE=45,ABDE,ABE+DEC=180,DEC=90,DCE=CDE
23、=45,EC=ED,MC=MD,EM垂直平分线段CD,EM平分DEC,MEC=45,BME是等腰直角三角形,BM=ME,BMEM故答案为BM=ME,BMEM(2)MEMB证明如下:连接CM,如解图所示DCAC,M是边AD的中点,MCMAMDBABC,BM垂直平分ACABC120,BABC,MBEABC60,BACBCA30,DCE60.ABDE,ABEDEC180,DEC60,DCEDEC60,CDE是等边三角形,ECEDMCMD,EM垂直平分CD,EM平分DEC,MECDEC30,MBEMEB90,即BME90.在RtBME中,MEB30,MEMB(3) 如图3中,结论:EM=BMtan理由
24、:同法可证:BMEM,BM平分ABC,所以EM=BMtan【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题10(1)问题发现如图1,点E.F分别在正方形ABCD的边BC、CD上,EAF=45,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,BAD=90,点E.F分别在边BC、CD上,EAF=45,若B,D都不是直角,则当B与D满足等量关系 时,仍有EF=BE+DF;(3)联想拓展如图3,在ABC中,BAC=90,AB=A
25、C,点D、E均在边BC上,且DAE=45,猜想BD、DE、EC满足的等量关系,并写出推理过程。【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】试题分析:(1)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AFGAFE,根据全等三角形的性质得出EF=FG,即可得出答案;(2)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AFEAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(3)把ACE旋转到ABF的位置,连接DF,证明AFEAFG(SAS),则EF=FG,C=ABF=45,BDF是直角三角形,根据勾股定理即可作出判断试题解析:(1)理由
26、是:如图1,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,如图1,ADC=B=90,FDG=180,点F. D. G共线,则DAG=BAE,AE=AG,FAG=FAD+GAD=FAD+BAE=9045=45=EAF,即EAF=FAG,在EAF和GAF中,AF=AF,EAF=GAF,AE=AG,AFGAFE(SAS),EF=FG=BE+DF;(2)B+D=180时,EF=BE+DF;AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,如图2,BAE=DAG,BAD=90,EAF=45,BAE+DAF=45,EAF=FAG,ADC+B=180,FDG=180,点F. D. G共线,在AFE和AFG中,AE=AG,FAE=FAG,AF=AF,AFEAFG(SAS),EF=FG,即:EF=BE+DF,故答案为:B+ADC=180;(3)BD2+CE2=DE2.理由是:把ACE旋转到ABF的位置,连接DF,则FAB=CAE.BAC=90,DAE=45,BAD+CAE=45,又FAB=CAE,FAD=DAE=45,则在ADF和ADE中,AD=AD,FAD=DAE,AF=AE,ADFADE,DF=DE,C=ABF=45,BDF=90,BDF是直角三角形,BD2+BF2=DF2,BD2+CE2=DE2.