1、【冲刺卷】高中必修一数学上期末试题含答案一、选择题1已知在R上是奇函数,且A-2B2C-98D982已知奇函数的图像关于点对称,当时,则当时,的解析式为( )ABCD3若函数f(x)a|2x4|(a0,a1)满足f(1),则f(x)的单调递减区间是( )A(,2B2,)C2,)D(,24酒驾是严重危害交通安全的违法行为为了保障交通安全,根据国家有关规定:100mL血液中酒精含量低于20mg的驾驶员可以驾驶汽车,酒精含量达到2079mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL如果在停止喝酒以后,他血液中酒精含量会以每小
2、时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg0.20.7,1g0.30.5,1g0.70.15,1g0.80.1)A1B3C5D75已知函数,若,则,的大小关系是( )ABCD6函数的单调递增区间为( )ABCD7函数f(x)ax2bxc(a0)的图象关于直线x对称据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程mf(x)2nf(x)p0的解集都不可能是()A1,2B1,4C1,2,3,4D1,4,16,648设是上的周期为2的函数,且对任意的实数,恒有,当时,若关于的方程(且)恰有五个不相同的实数根,则实数的取值范围是( )ABCD9已知是以
3、为周期的偶函数,且时,则当时,( )ABCD10若,则( )ABCD11已知表示不超过实数的最大整数,为取整函数,是函数的零点,则等于()A1B2C3D412对数函数且与二次函数在同一坐标系内的图象可能是()ABCD二、填空题13已知函数(,为常数),若,则的值为_14对于函数f(x),若存在x0R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知f(x)=x2+ax+4在1,3恒有两个不同的不动点,则实数a的取值范围_.15若函数在时取得最小值,则实数的取值范围是_;16函数,若,使得,则正整数的最大值为_.17求值: _18函数,其中,若动直线与函数的图像有三个不同的交点,则实数的
4、取值范围是_.19已知,且,则_20若集合且则实数_.三、解答题21已知二次函数满足:,的最小值为1,且在轴上的截距为4.(1)求此二次函数的解析式;(2)若存在区间,使得函数的定义域和值域都是区间,则称区间为函数的“不变区间”.试求函数的不变区间;(3)若对于任意的,总存在,使得,求的取值范围.22已知函数 的零点是-3和2(1)求函数的解析式.(2)当函数的定义域是时求函数的值域.23已知函数.(1)判断函数的奇偶性;(2)若,求实数的取值范围.24随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某
5、投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下:投资A产品的收益与投资额的算术平方根成正比;投资B产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A产品的收益、B产品的收益与投资额x的函数关系式;(2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?25已知函数为在上的奇函数,且.(1)用定义证明在的单调性;(2)解不等式.26某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病人数,甲选择了模型,乙选择了模型,其中为患病人数,为月份
6、数,都是常数.结果4月,5月,6月份的患病人数分别为66,82,115,你认为谁选择的模型较好?【参考答案】*试卷处理标记,请不要删除一、选择题1A解析:A【解析】f(x4)f(x),f(x)是以4为周期的周期函数,f(2 019)f(50443)f(3)f(1)又f(x)为奇函数,f(1)f(1)2122,即f(2 019)2.故选A2C解析:C【解析】【分析】当时,,结合奇偶性与对称性即可得到结果.【详解】因为奇函数的图像关于点对称,所以,且,所以,故是以为周期的函数.当时,故因为是周期为的奇函数,所以故,即,故选C【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,
7、属于中档题.3B解析:B【解析】由f(1)=得a2=,a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-,2上单调递减,在2,+)上单调递增,所以f(x)在(-,2上单调递增,在2,+)上单调递减,故选B.4C解析:C【解析】【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型 求解.【详解】因为1小时后血液中酒精含量为(1-30%)mg/mL,x小时后血液中酒精含量为(1-30%)x mg/mL的,由题意知100mL血液中酒精含量低于20mg的驾驶员可以驾驶汽车,所以,两边取对数得, , ,所以至少经过5个小时才能驾驶汽车.故选:C【点睛】本题主要考查了指数不
8、等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.5D解析:D【解析】【分析】可以得出,从而得出ca,同样的方法得出ab,从而得出a,b,c的大小关系【详解】, ,根据对数函数的单调性得到ac,又因为,再由对数函数的单调性得到ab,ca,且ab;cab故选D【点睛】考查对数的运算性质,对数函数的单调性比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6C解析:C【解析】【分析】求出函数的定义域,然后利用复合函数法可求出函数的单调递增区间.【详解】解不等式,解得或,函数的定义域为.内层函数在区间上为减函数,在区间上为增函数,外层
9、函数在上为减函数,由复合函数同增异减法可知,函数的单调递增区间为.故选:C.【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.7D解析:D【解析】【分析】方程不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项.【详解】设关于的方程有两根,即或.而的图象关于对称,因而或的两根也关于对称而选项D中.故选D.【点睛】对于形如的方程(常称为复合方程),通过的解法是令,从而得到方程组,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两
10、个函数的图像特征.8D解析:D【解析】由,知是偶函数,当时,且是上的周期为2的函数,作出函数和的函数图象,关于的方程(且)恰有五个不相同的实数根,即为函数和的图象有5个交点,所以,解得.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等9B解析:B【解析】【分析】【详解】因为是以为周期,所以当时,此时,又因为偶函数,所以有,所以,故,故选B.10A解析:A【解析】因为,所以,由于,所以,应选答案A 11B解
11、析:B【解析】【分析】根据零点存在定理判断,从而可得结果.【详解】因为在定义域内递增,且,由零点存在性定理可得,根据表示不超过实数的最大整数可知,故选:B.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.12A解析:A【解析】【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案.【详解】由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B项不正确,只有选项A满足.【点睛】本题
12、主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题13【解析】【分析】由求得进而求解的值得到答案【详解】由题意函数(为常数)且所以所以又由故答案为:【点睛】本题主要考查了函数值的求解其中解答中根据函数的解析式准确运算是解答的关键着重考查了计算能力属于基解析:【解析】【分析】由,求得,进而求解的值,得到答案.【详解】由题意,函数(,为常数),且,所以,所以,又由.故答案为:.【点睛】本题主要考查了函数值的求解,其中解答中根据函数的解析式,准确运算是解答的关键,着重考查了
13、计算能力,属于基础题.14【解析】【分析】不动点实际上就是方程f(x0)=x0的实数根二次函数f(x)=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:【解析】【分析】不动点实际上就是方程f(x0)=x0的实数根,二次函数f(x)=x2+ax+4有不动点,是指方程x=x2+ax+4有实根,即方程x=x2+ax+4有两个不同实根,然后根据根列出不等式解答即可【详解】解:根据题意,f(x)=x2+ax+4在1,3恒有两个不同的不动点,得x=x2+ax+4在1,3有两个实数根,即x2+(a1)x+4=0在1,3有两个不同实
14、数根,令g(x)=x2+(a1)x+4在1,3有两个不同交点,即,解得:a;故答案为:【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题15【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为:解析:【解析】【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到解不等式组即可.【详解】当时,当时,且,当时,且,当时,且,若函数在时取得最小值,根据一次函数的单调性和函数值可得,解得,故实数的取值范围为故答案为:【点睛
15、】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.166【解析】【分析】由题意可得由正弦函数和一次函数的单调性可得的范围是将已知等式整理变形结合不等式的性质可得所求最大值【详解】解:函数可得由可得递增则的范围是即为即即由可得即而可得的最大值为6故答案为解析:6【解析】【分析】由题意可得,由正弦函数和一次函数的单调性可得的范围是,将已知等式整理变形,结合不等式的性质,可得所求最大值.【详解】解:函数,可得,由,可得递增,则的范围是,即为,即,即,由,可得,即,而,可得的最大值为6.故答案为:6.【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理
16、能力,属于中档题.17【解析】由题意结合对数指数的运算法则有:解析:【解析】由题意结合对数、指数的运算法则有:.18【解析】【分析】【详解】试题分析:由可知是求两个函数中较小的一个分别画出两个函数的图象保留较小的部分即由可得x28x+40解可得当时此时f(x)|x2|当或时此时f(x)2f(42)解析:【解析】【分析】【详解】试题分析:由可知是求两个函数中较小的一个,分别画出两个函数的图象,保留较小的部分,即由可得x28x+40,解可得当时,此时f(x)|x2|当或时,此时f(x)2f(42)2其图象如图所示,时,ym与yf(x)的图象有3个交点故答案为考点:本小题主要考查新定义下函数的图象和
17、性质的应用,考查学生分析问题、解决问题的能力和数形结合思想的应用.点评:本小题通过分别画出两个函数的图象,保留较小的部分,可以很容易的得到函数的图象,从而数形结合可以轻松解题.19【解析】因为所以所以故填解析:【解析】因为,所以,所以,故填20或【解析】【分析】先解二次不等式可得再由讨论参数两种情况再结合求解即可【详解】解:解不等式得即当时满足当时又则解得又则综上可得或故答案为:或【点睛】本题考查了二次不等式的解法空集的定义及集合的包解析:或【解析】【分析】先解二次不等式可得,再由,讨论参数,两种情况,再结合求解即可.【详解】解:解不等式,得,即,当时,满足,当时,又,则,解得,又,则,综上可
18、得或,故答案为:或.【点睛】本题考查了二次不等式的解法、空集的定义及集合的包含关系,重点考查了分类讨论的数学思想方法,属基础题.三、解答题21(1);(2);(3)【解析】【分析】(1)由,得对称轴是,结合最小值可用顶点法设出函数式,再由截距求出解析式;(2)根据二次函数的单调性确定函数的最大值和最小值,然后求解(3)求出在的最大值4,对函数换元,得,由用分离参数法转化【详解】(1),对称轴是,又函数最小值是1,可设(),(2)若,则,且,解得,不变区间是;若,则在上是减函数,或4,因为,所以舍去;若,则在上是增函数,是方程的两根,由得,不合题意综上;(3),时,设,令,当时,由题意存在,使成
19、立,即,时,的最小值是,所以【点睛】本题考查求二次函数解析式,考查二次函数的创新问题,考查不等式恒成立和能成立问题二次函数的解析式有三种形式:,解题时要根据具体的条件设相应的解析式二次函数的值域问题要讨论对称轴与区间的关系,以确定函数的单调性,得最值难点是不等式问题,对于任意的,说明不等式恒成立,而存在,说明不等式“能”成立一定要注意是转化为求函数的最大值还是最小值22(1)(2)【解析】【分析】【详解】(1) , (2)因为开口向下,对称轴 ,在单调递减,所以所以函数的值域为【点睛】本题将函数的零点、解析式、最大小值等有关知识与性质有机整合在一起,旨在考查函数的表示、零点、最大小值等基础知识
20、及综合运用求解时先依据函数零点与方程的根之间的关系,求出函数解析式中的参数的值;解答第二问时,借助二次函数的图像和性质,运用数形结合的数学思想求出最大小值从而使得问题获解23(1)奇函数;(2)【解析】【分析】(1)根据函数奇偶性的定义,求出函数的定义域及与的关系,可得答案;(2)由(1)知函数是奇函数,将原不等式化简为,判断出的单调性,可得关于的不等式,可得的取值范围.【详解】解:(1)函数的定义域是,因为,所以,即,所以函数是奇函数.(2)由(1)知函数是奇函数,所以,设,.因为是增函数,由定义法可证在上是增函数,则函数是上的增函数.所以,解得,故实数的取值范围是.【点睛】本题主要考查函数
21、的单调性、奇偶性的综合应用,属于中档题.24(1),;(2) 当投资A产品万元,B产品万元时,收益最大为.【解析】【分析】(1)设出函数解析式,待定系数即可求得;(2)构造全部收益关于的函数,求函数的最大值即可.【详解】(1)由题可设:,又其过点,解得:同理可设:,又其过点,解得:故,(2)设10万元中投资A产品,投资B产品,故:总收益 =+ 令,则,则: =故当且仅当,即时,取得最大值为.综上所述,当投资A产品万元,B产品万元时,收益最大为.【点睛】本题考查待定系数法求函数解析式、以及实际问题与函数的结合,属函数基础题.25(1)证明见解析;(2).【解析】【分析】(1)根据函数为定义在上的
22、奇函数得,结合求得的解析式,再利用单调性的定义进行证明;(2)因为,由(1)可得,解指数不等式即可得答案.【详解】(1)因为函数为在上的奇函数,所以 则有 解得,即 ,且 因为,且,所以,所以即 ,所以在上单调递减 .(2)因为,由(1)可得不等式可化为,即( 解得,即 所以不等式的解集为【点睛】本题考查奇函数的应用、单调性的定义证明、利用单调性解不等式,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意不等式的解集要写成集合的形式.26乙选择的模型较好.【解析】【分析】由二次函数为,利用待定系数法求出解析式,计算时的函数值;再求出函数的解析式,计算时的函数值,最后与真实值进行比较,可决定选择哪一个函数式好.【详解】依题意,得,即,解得甲:,又,,将代入式,得将代入式,得, 乙:计算当时,;当时,;当时,.可见,乙选择的模型与实际数据接近,乙选择的模型较好.【点睛】本题考查了根据实际问题选择函数类型的应用问题,也考查了用待定系数法求函数解析式的应用问题,意在考查灵活运用所学知识解决实际问题的能力,是中档题