1、28.4 弧长和扇形面积(第1课时) 教学内容 1n的圆心角所对的弧长L= 2扇形的概念; 3圆心角为n的扇形面积是S扇形=; 4应用以上内容解决一些具体题目 教学目标 了解扇形的概念,理解n的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用 通过复习圆的周长、圆的面积公式,探索n的圆心角所对的弧长L=和扇形面积S扇=的计算公式,并应用这些公式解决一些题目 重难点、关键 1重点:n的圆心角所对的弧长L=,扇形面积S扇=及其它们的应用 2难点:两个公式的应用 3关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程 教具、学具准备 小黑板、圆规、直尺、量角器、纸板 教学过程 一、复习引入
2、(老师口问,学生口答)请同学们回答下列问题 1圆的周长公式是什么? 2圆的面积公式是什么? 3什么叫弧长? 老师点评:(1)圆的周长C=2R (2)圆的面积S图=R2 (3)弧长就是圆的一部分 二、探索新知 (小黑板)请同学们独立完成下题:设圆的半径为R,则: 1圆的周长可以看作_度的圆心角所对的弧 21的圆心角所对的弧长是_ 32的圆心角所对的弧长是_ 44的圆心角所对的弧长是_ 5n的圆心角所对的弧长是_ (老师点评)根据同学们的解题过程,我们可得到: n的圆心角所对的弧长为例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图所示的管道的展直长度,即的长(结果精确到0.1m
3、m) 分析:要求的弧长,圆心角知,半径知,只要代入弧长公式即可 解:R=40mm,n=110 的长=76.8(mm) 因此,管道的展直长度约为76.8mm问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图所示: (1)这头牛吃草的最大活动区域有多大? (2)如果这头牛只能绕柱子转过n角,那么它的最大活动区域有多大? 学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积(2)如果这头牛只能绕柱子转过n角,那么它的最大活动区域应该是n圆心角的两个半径的n圆心角所对的弧所围成的圆的一部分的图形,如
4、图: 像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形 (小黑板),请同学们结合圆心面积S=R2的公式,独立完成下题: 1该图的面积可以看作是_度的圆心角所对的扇形的面积 2设圆的半径为R,1的圆心角所对的扇形面积S扇形=_ 3设圆的半径为R,2的圆心角所对的扇形面积S扇形=_ 4设圆的半径为R,5的圆心角所对的扇形面积S扇形=_ 5设圆半径为R,n的圆心角所对的扇形面积S扇形=_ 老师检察学生练习情况并点评 1360 2S扇形=R2 3S扇形=R2 4S扇形= 5S扇形= 因此:在半径为R的圆中,圆心角n的扇形S扇形=例2如图,已知扇形AOB的半径为10,AOB=60,求的
5、长(结果精确到01)和扇形AOB的面积结果精确到01) 分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足 解:的长=10=10.5 S扇形=102=52.3 因此,的长为25.1cm,扇形AOB的面积为150.7cm2 三、巩固练习 课本P122练习 四、应用拓展例3(1)操作与证明:如图所示,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a(2)尝试与思考:如图a、b所示,将一块半径足够长的扇形纸板的圆心角放在边长为a的正三角形或边长为a的正五边形的中心
6、点处,并将纸板绕O旋转,当扇形纸板的圆心角为_时,正三角形边被纸覆盖部分的总长度为定值a;当扇形纸板的圆心角为_时,正五边形的边长被纸板覆盖部分的总长度也为定值a (a) (b) (3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为_时,正n边形的边被纸板覆盖部分的总长度为定值a,这时正n边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB、AD分别交于点M、N,连结OA、OD 四边形ABCD
7、是正方形 OA=OD,AOD=90,MAO=NDO, 又MON=90,AOM=DON AMODNO AM=DN AM+AN=DN+AN=AD=a 特别地,当点M与点A(点B)重合时,点N必与点D(点A)重合,此时AM+AN仍为定值a 故总有正方形的边被纸板覆盖部分的总长度为定值a (2)120;70 (3);正n边形被纸板覆盖部分的面积是定值,这个定值是 五、归纳小结(学生小结,老师点评) 本节课应掌握: 1n的圆心角所对的弧长L= 2扇形的概念 3圆心角为n的扇形面积是S扇形= 4运用以上内容,解决具体问题 六、布置作业 1教材P124 复习巩固1、2、3 P125 综合运用5、6、72选用
8、课时作业设计第一课时作业设计一、 选择题1已知扇形的圆心角为120,半径为6,则扇形的弧长是( ) A3 B4 C5 D6 2如图1所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B所经过的路线长度为( )A1 B C D (1) (2) (3) 3如图2所示,实数部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A12m B18m C20m D24m 二、填空题 1如果一条弧长等于R,它的半径是R,那么这条弧所对的圆心角度数为_, 当圆心角增加30时,这条弧长增加_2如图3所示,OA=3
9、0B,则的长是的长的_倍 三、综合提高题1已知如图所示,所在圆的半径为R,的长为R,O和OA、OB分别相切于点C、E,且与O内切于点D,求O的周长2如图,若O的周长为20cm,A、B的周长都是4cm,A在O内沿O滚动,B在O外沿O滚动,B转动6周回到原来的位置,而A只需转动4周即可,你能说出其中的道理吗? 3如图所示,在计算机白色屏幕上,有一矩形着色画刷ABCD,AB=1,AD=,将画刷以B为中心,按顺时针转动ABCD位置(A点转在对角线BD上),求屏幕被着色的面积答案:一、1B 2D 3D二、145 R 23三、1连结OD、OC,则O在OD上由=R,解得:AOB=60,由RtOOC解得O的半
10、径r=R,所以O的周长为2r=R2O、A、B的周长分别为20cm,4cm,4cm,可求出它的半径分别为10cm、2cm、2cm,所以OA=8cm,OB=12cm,因为圆滚动的距离实际等于其圆心经过的距离,所以A滚动回原位置经过距离为28=16=44,而B滚动回原位置经过距离为212=24=46因此,与原题意相符3设屏幕被着色面积为S,则S=SABD+S扇形BDD+SBCD=S矩形ABCD+S扇形BDD,连结BD,在RtABD中,AB=1,AD=AD=,BD=BD=2,DBD=60,S=22+1=+28.4 弧长和扇形面积(第2课时) 教学内容 1圆锥母线的概念 2圆锥侧面积的计算方法 3计算圆
11、锥全面积的计算方法 4应用它们解决实际问题 教学目标 了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题 通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题 重难点、关键 1重点:圆锥侧面积和全面积的计算公式 2难点:探索两个公式的由来 3关键:你通过剪母线变成面的过程 教具、学具准备 直尺、圆规、量角器、小黑板 教学过程 一、复习引入 1什么是n的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点2问题1:一种太空囊的示意图如图所示,太空囊的外表面须作特别处理,以承受重返地球大气层时与空气
12、摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的 老师点评:(1)n圆心角所对弧长:L=,S扇形=,公式中没有n,而是n;弧长公式中是R,分母是180;而扇形面积公式中是R,分母是360,两者要记清,不能混淆 (2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,圆柱的侧面积和底圆的面积 这三部分中,第二部分和第三部分我们已经学过,会求出其面积,但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它 二、探索新知 我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线 (学生分组讨论,提问二
13、三位同学)问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,底面圆的半径为r,如图24-115所示,那么这个扇形的半径为_,扇形的弧长为_,因此圆锥的侧面积为_,圆锥的全面积为_ 老师点评:很显然,扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长因此,要求圆锥的侧面积就是求展开图扇形面积S=,其中n可由2r=求得:n=,扇形面积S=rL;全面积是由侧面积和底面圆的面积组成的,所以全面积=rL+r2 例1圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的
14、纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2) 分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积 解:设纸帽的底面半径为rcm,母线长为Lcm,则 r= L=22.03 S纸帽侧=rL5822.03=638.87(cm) 638.8720=12777.4(cm2) 所以,至少需要12777.4cm2的纸 例2已知扇形的圆心角为120,面积为300cm2 (1)求扇形的弧长; (2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少? 分析:(1)由S扇形=求出R,再代入L=求得(2)若将此扇形卷成一个圆锥,扇形的弧长就是圆锥底面圆的周长,就可求圆的半径
15、,其截面是一个以底是直径,圆锥母线为腰的等腰三角形解:(1)如图所示: 300= R=30 弧长L=20(cm)(2)如图所示: 20=20r r=10,R=30 AD=20 S轴截面=BCAD =21020=200(cm2) 因此,扇形的弧长是20cm卷成圆锥的轴截面是200cm2 三、巩固练习 教材P124 练习1、2 四、应用拓展 例3如图所示,经过原点O(0,0)和A(1,-3),B(-1,5)两点的曲线是抛物线y=ax2+bx+c(a0). (1)求出图中曲线的解析式; (2)设抛物线与x轴的另外一个交点为C,以OC为直径作M,如果抛物线上一点P作M的切线PD,切点为D,且与y轴的正
16、半轴交点为E,连结MD,已知点E的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示)(3)延长DM交M于点N,连结ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=SDON请求出此时点P的坐标 解:(1)O(0,0),A(1,-3),B(-1,5)在曲线y=ax2+bx+c(a0)上 解得a=1,b=-4,c=0 图中曲线的解析式是y=x2-4x(2)抛物线y=x2-4x与x轴的另一个交点坐标为c(4,0),连结EM, M的半径为2,即OM=DM=2 ED、EO都是M的切线 EO=ED EOMEDM S四边形EOMD=2SOME=2OMOE=2m (3)设
17、点D的坐标为(x0,y0) SDON=2SDOM=2OMy0=2y0 S四边形ECMD=SDON时即2m=2y0,m=y0 m=y0 EDx轴 又ED为切线 D(2,2) 点P在直线ED上,故设P(x,2) P在圆中曲线y=x2-4x上 2=x2-4x 解得:x=2 P1(2+,0),P2(2-,2)为所求 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1什么叫圆锥的母线 2会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题 六、布置作业 1教材P124 复习巩固4 P125 综合运用8 拓广探索9、10 2选用课时作业设计 第二课时作业设计 一、选择题 1圆锥的母线长为13cm,底
18、面半径为5cm,则此圆锥的高线为( ) A6cm B8cm C10cm D12cm 2在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为( ) A228 B144 C72 D36 3如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是( )A6 B C3 D3 二、填空题 1母线长为L,底面半径为r的圆锥的表面积=_ 2矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的表面积是_(用含的代数式表示) 3粮仓顶部是一
19、个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用_m2的油毡 三、综合提高题 1一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,需要加工这样的一个烟囱帽,请你画一画: (1)至少需要多少厘米铁皮(不计接头) (2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?2如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60,求圆锥全面积 3如图所示,一个几何体是从高为4m,底面半径为3cm的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心
20、上,求这个几何体的表面积答案:一、1D 2C 3C二、1r2+rL 21 30cm2 3158.4三、1(1)2400cm2 (2)40cm248cm2 3S表=S柱侧+S柱底+S锥侧=234+32+35=24+9+15=48cm2 弧长和扇形的面积教学目标1.掌握弧长的计算公式;2能灵活应用弧长的计算公式解决有关的问题,并在应用中培养学生的分析问题、解决问题的能力;3、掌握扇形面积公式的推导过程,运用扇形面积公式进行一些有关计算;4、通过弧长公式、扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力教学过程(一)1圆心角所对弧长= ;n圆心角所对的弧长是1圆心角所对的弧长的n倍;
21、n圆心角所对弧长 = 归纳结论:若设O半径为R, n圆心角所对弧长l,则 (弧长公式)例1、填空:(1)半径为3cm,120的圆心角所对的弧长是_cm;(2)已知圆心角为150,所对的弧长为20,则圆的半径为_;(3)已知半径为3,则弧长为的弧所对的圆心角为_(在弧长公式中l、n、R知二求一)例2、如图,圆心角为60的扇形的半径为10厘米,求这个扇形周长例3、如图:四边形ABCD是正方形,曲线DAlBlClDl叫做“正方形的渐开线”,其中中 、 、 、 的圆心依次按A、B、C、D循环,它们依次连接取AB=l,则曲线DAlBlC2D2的长是_(结果保留)(二)扇形的面积(1)圆面积S=R2;(2
22、)圆心角为1的扇形的面积= ;(3)圆心角为n的扇形的面积是圆心角为1的扇形的面积n倍;(4)圆心角为n的扇形的面积 = 归纳结论:若设O半径为R,圆心角为n的扇形的面积S扇形,则S扇形= (扇形面积公式) 提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)S扇形= lR想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了这样对比,帮助学生记忆公式实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限
23、要让学生在理解的基础上记住公式例题与练习:1、扇形的面积为 cm2,扇形所在圆的半径 cm,则圆心角为_度2、已知扇形的圆心角为210,弧长是28,则扇形的面积为_3、已知扇形的半径为5cm,面积为20 cm2,则扇形弧长为_cm 4、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积 思考应用问题:正方形的边长为4,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积 反思:对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;图形的美也存在着内在的规律(3)求面积问题的常用方法有:直接公式法,和差法,割补法等作业与练习、1、如图1所示,矩形中长和
24、宽分别为10 cm和6cm,则阴影部分的面积为_2、如图2所示,边长为a的正三角形中,阴影部分的面积为_3如图,在边长l的正方形中,以各顶点为圆心,对角线长的一半为半径在正方形内画弧,则图中阴影部分的面积为_ 4.探究活动:已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度请根据下列特殊情况,找出规律,并加以证明提示:设钢管的根数为n,金属带的长度为Ln如图:当n=2时,L2=(+2)d 当n=3时,L3=(+3)d 当n=4时,L4=(+4)d当n=5时,L5=(+5)d 当n=6时,L6=(+6)d 当n=7时,L7=(+6)d当n=8时,L8=(+7)d猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(+n)d课堂总结: 这节课学习了哪些计算公式? 你能灵活应用弧长与扇形的计算公式解决有关的问题吗?