确定决策变量-即用变量取不同的值来表示可供选择的课件.ppt

上传人(卖家):ziliao2023 文档编号:6007402 上传时间:2023-05-21 格式:PPT 页数:53 大小:1.54MB
下载 相关 举报
确定决策变量-即用变量取不同的值来表示可供选择的课件.ppt_第1页
第1页 / 共53页
确定决策变量-即用变量取不同的值来表示可供选择的课件.ppt_第2页
第2页 / 共53页
确定决策变量-即用变量取不同的值来表示可供选择的课件.ppt_第3页
第3页 / 共53页
确定决策变量-即用变量取不同的值来表示可供选择的课件.ppt_第4页
第4页 / 共53页
确定决策变量-即用变量取不同的值来表示可供选择的课件.ppt_第5页
第5页 / 共53页
点击查看更多>>
资源描述

1、 1、建模的一般步骤:步骤一:确定决策变量 即用变量取不同的值来表示可供选择的各种不同方案步骤二:建立目标函数 即找到目标值与决策变量的数量关系步骤三:确定约束条件即决策变量所受到的外界条件的制约。约束条件一般为决策变量的等式或不等式要求:目标函数与约束条件均是线性的,且目标函数只能是一个。2、线性规划模型的一般形式:nnxcxcxcz2211minmax)(或mnmnmmnnnnbxaxaxabxaxaxabxaxaxats),或或),或或),或或(.22112222212111212111为已知常数其中),2,1;,2,1(,njmicbajiij0,21nxxx决策变量约束方程非负约束

2、目标函数三、线性规划求解:四、线性规划应用举例nnxcxcxcz2211minmax)(或mnmnmmnnnnbxaxaxabxaxaxabxaxaxat s),或或),或或),或或(.221122222121112121110,21nxxx计算机应用软件时间所需售货员 人数星期日28人星期一15人星期二24人星期三25人星期四19人星期五31人星期六28人例3 福安商场是个中型的百货商场,它对售货人员的 需求经过统计分析如下所示:为保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货人员的作息,既满足了工作的需要,又使配备的售货人员的人数最少?解

3、,为周二开始休息的人数,为周一开始休息的人数设21xx,为周日开始休息的人数,为周六开始休息的人数76xx表示商场的售货员人数Z721xxx721minxxxZ求2854321xxxxx时间所需售货员人数星期日28人星期一15人星期二24人星期三25人星期四19人星期五31人星期六28人约束条件:星期日 售货员人数要求:1565432xxxxx星期一 售货员人数要求:2476543xxxxx星期二 售货员人数要求:2576541xxxxx星期三 售货员人数要求:1976521xxxxx星期四 售货员人数要求:3176321xxxxx星期五 售货员人数要求:2874321xxxxx星期六 售货员

4、人数要求:数学模型:721minxxxZ求ts.非负约束:7,2,1,0ixi2854321xxxxx1565432xxxxx2476543xxxxx2576541xxxxx1976521xxxxx3176321xxxxx2874321xxxxx7,2,1,0ixi7,2,1,iixi日开始休息的人数为星期数学模型:721minxxxZ求ts.2854321xxxxx1565432xxxxx2476543xxxxx2576541xxxxx1976521xxxxx3176321xxxxx2874321xxxxx7,2,1,0ixi解得:36.0,8,0,5,11,0,1207654321Zxxx

5、xxxx时间所需售货员 人数星期日28人星期一15人星期二24人星期三25人星期四19人星期五31人星期六28人例3 福安商场是个中型的百货商场,它对售货人员的 需求经过统计分析如下所示:为保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货人员的作息,既满足了工作的需要,又使配备的售货人员的人数最少?解,为周二开始休息的人数,为周一开始休息的人数设21xx,为周日开始休息的人数,为周六开始休息的人数76xx表示商场的售货员人数Z36.0,8,0,5,11,0,1207654321Zxxxxxxx解得:方案1方案2方案3方案4方案52.9m1201

6、02.1m002211.5m31203合计7.4m7.3m7.2m7.1m6.6下角料0m0.1m0.2m0.3m0.8m方案下料数(根)长度例4 某工厂要做100套钢架,每套用长为2.9m,2.1m,和1.5m的圆钢各一根,已知原料每根长7.4m,问应如何下料,可使所用原料最省.分析:每根原料做一套钢架,下角料:0.9m用套裁方式下料方案:方案1方案2方案3方案4方案52.9m120102.1m002211.5m31203合计7.4m7.3m7.2m7.1m6.6下角料0m0.1m0.2m0.3m0.8m方案下料数(根)长度下料方案:)5,4,3,2,1iixi数(第种方案下料的原料根为按解

7、:设表示总用料数Z数学模型:54321minxxxxxZ求ts.1002421xxx10022543xxx1003235321xxxx.0,0,0,0,054321xxxxx方案1方案2方案3方案4方案52.9m120102.1m002211.5m31203合计7.4m7.3m7.2m7.1m6.6下角料0m0.1m0.2m0.3m0.8m方案下料数(根)长度例4 某工厂要做100套钢架,每套用长为2.9m,2.1m,和1.5m的圆钢各一根,已知原料每根长7.4m,问应如何下料,可使所用原料最省.下料方案:90.0,05,0,01,30054321Zxxxxx最优值最优解:)5,4,3,2,1

8、iixi数(第种方案下料的原料根为按总用料数Z最优下料方案:按方案1下料30根,方案2下料10根,方案4下料50根,共需原料90根。例5 (产品配套问题)假定一个工厂的甲、乙、丙三个车间生产同一个产品,每件产品包括4个A零件,和3个B零件。这两种零件由两种不同的原材料制成,而这两种原材料的现有数额分别为100克和200克。每个生产班的原材料需要量和零件产量如下表所示。每班进料数(克)每班产量(个数)第1种原材料第2种原材料A零件B零件甲8675乙5969丙3884车间问这三个车间各应开多少班才能使这种产品的配套数达到最大车间所开的生产班数分别是甲、乙、丙三个,解:设321xxx产品的配套数z约

9、束条件为:100358321xxx200896,321xxx000321xxx,三个车间共生产A零件:321867xxx三个车间共生产B零件321495xxx4867321xxxminz则3495,321xxx非线性表示生产出的产品数设4x要求:每班进料数(克)每班产量(个数)第1种原材料第2种原材料A零件B零件甲8675乙5969丙3884车间车间所开的生产班数分别是甲、乙、丙三个,321xxx产品的配套数z目标函数:目标函数 Z=x4线性43214867xxxx43213495,xxxx数学模型:100358321xxx200896321xxx.0,0004321xxxx,4maxxz 线

10、性规划问题t s.048674321xxxx034954321xxxx例6 (多周期动态生产计划问题)华津机器制造厂专为拖拉机厂配套生产柴油机,今年头四个月收到的定单数量分别为3000台、4500台、3500台、5000台。该厂正常生产每月可生产3000台,利用加班还可生产1500台,正常生产成本为每台5000元,加工生产还要追加1500元,库存成本为每台每月200元。问华津厂如何组织生产才能使生产成本最低?分析:设C=成本=四个月正常生产的成本+四个月加班生产的成本+四个月库存成本台柴油机个月正常生产设第ixi台柴油机加班生产iy,台柴油机个月初库存第izi4,3,2,1iC则415000i

11、ix416500iiy41200iiz41)20065005000(iiiizyx约束条件:台柴油机个月正常生产设第ixi台柴油机加班生产iy,台柴油机个月初库存第izi01z其中4,3,2,1i需求约束:第4个月5000444zyx第3个月35004333zzyx第2个月45003222zzyx第1个月3000211zyx生产能力约束:4,3,2,13000ixi4,3,2,11500iyi数学模型:ts.4,3,2,1,0,izyxiii41)20065005000(miniiiizyxC5000444zyx35004333zzyx45003222zzyx3000211zyx4,3,2,1

12、3000ixi4,3,2,11500iyi四个月定单数量分别为3000台、4500台、3500台、5000台每月可生产3000台,利用加班还可生产1500台库存约束:01z01z例7.连续投资问题建模:某投资公司有100万元资金用于投资,投资的方案可以有以下六种,现要做一个5年期的投资计划,具体可选择的投资方案如下:方案A:5年内的每年年初均可投资,且金额不限,投资期限1 年,年投资回报率7%。方案B:5年内的每年年初均可投资,且金额不限,投资期限2 年,年投资回报率10%(不计复利)。方案C:5年内的每年年初均可投资,且金额不限,投资期限3 年,年投资回报率12%(不计复利)方案D:只在第一

13、年年初有一次投资机会,最大投资金额为50 万元,投资期限4年,年投资回报率20%方案E:在第二年和第四年年初有一次投资机会,最大投资金额 均为30万元,投资期限1年,年投资回报率30%方案F:在第四年年初有一次投资机会,金额不限,投资期限2 年,年投资回报率25%假设当年的投资金额及其收益均可用于下一年的投资,问公司应如何投资才能使第五年末收回的资金最多?假设当年的投资金额及其收益均可用于下一年的投资,问公司应如何投资才能使第五年末收回的资金最多?所投资的金额,年初按方按分别表示第解:设FEDCBAiiFEDCBAiiiiii)5,4,3,2,1(,年末收回的总资金第5Z第一年初 第二年初 第

14、三年初 第四年初 第五年初 第五年末1A107.1A207.1A307.1A407.1A5A507.1A1B12.1B22.1B32.1B42.1B1C136.1C236.1C3A3B3C336.1C1D18.1D2A2B2C2E23.1E43.1E4A4B4E4F45.1E544307.15.12.136.1maxAFBCz求10000001111DCBA007.112222AECBA03.107.12.1211333EABCBA007.12.136.11214344ABCFEBA03.107.12.136.18.1413215EABCDA5000001D3000002E3000004E)5

15、,4,3,2,1(0,iFEDCBAiiiiiit s.连续投资问题模型:1.1.2、线性规划的标准形式和矩阵表达式线性规划问题的一般形式:nnxcxcxcz2211minmax)(或mnmnmmnnnnbxaxaxabxaxaxabxaxaxat s),或或),或或),或或(.22112222212111212111为已知常数其中),2,1;,2,1(,njmicbajiij0,21nxxx1、线性规划的标准形式nnxcxcxcz2211maxmnmnmmnnnnbxaxaxabxaxaxabxaxaxats22112222212111212111.0,21nxxx0,21mbbbniiix

16、cz1maxnijijibxa1mj,2,1nixi,2,10mjbj,2,10niiixcz1max即nijijibxats1.mjbj,2,10nixi,2,10nnxcxcxcz2211maxmnmnmmnnnnbxaxaxabxaxaxabxaxaxats22112222212111212111.0,21nxxx0,21mbbb标准型式的特征:1、求目标函数的最大值2、约束方程为等式方程3、约束方程的右边非负4、决策变量均非负非标准型式有以下几种可能:1、求目标函数的最小值4、决策变量0,都存在可行解使得该线性规划的目标 函数值MZ,则称该线性规划问题无界二、两个变量的线性规划的图解法

17、0,3482.52max121212121xxxxxxtsxxz划用图解法解以下线性规例解:(1)在直角坐标系上画出可行域(2)做目标函数的等值线3*,2*)4(21xx最优解为193522*z最优值01x2x.8221xx41x32x可行域kxx2152105221 xx求交点:)3(382221xxx)3,2(),(21xx凸多边形顶点.0,3482.2max221212121xxxxxxtsxxz划用图解法解以下线性规例解:(1)在直角坐标系上画出可行域(2)做目标函数的等值线8*)3(z最优值01x2x.8221xx41x32x2221xx求交点:382221xxx)3,2(),(21

18、xx2221xx482121xxx)2,4(),(21xx)之间的所有点。,)与点(,上界于点(最优解:直线24328221xx无穷多.0,4422.32max321212121xxxxxxtsxxz划用图解法解以下线性规例解:(1)在直角坐标系上画出可行域(2)做目标函数的等值线01x2x.2221 xx63221xx4421xx目标函数无上界,该问题无界无最优解0,43222.32max4212212121xxxxxxxtsxxz划用图解法解以下线性规例解:(1)在直角坐标系上画出可行域01x2x.3221 xx42x2221xx可行域为空集无可行解该问题无最优解图解法的基本步骤:的图形上

19、做出可行域、在直角坐标系Soxx211(一般是一个凸多边形),2k给定的常数、令目标函数值取一个kxcxcZ2211做等值线,max3由小变大问题,令目标函数值、对k即让等值线向上平移,点边界线上的点均是最优的一条边界重合,此时若与点,则该点就是所求的最优的一个顶点),是最后交于一个点(一般若它与可行域SSS,即得最优解立求解,边界线所代表的方程联、将最优点所在的两条*4X*CXZX值带入目标函数,得最优把最优解注意:若是求目标函数的最小值,目标函数直线向下移动关于线性规划解的结论:1、若(LP)问题有可行解,则可行域是一个凸多边形(或凸多面体)。它可能是有界的;也可能是无界的。2、若(LP)

20、问题有最优解,则最优解可能是唯一的;也可能 是无穷多个。如果是唯一的,这个解一定在该凸多边形的某 个顶点上;如果是无穷多个,则这些最优解一定充满凸多边 形的一条边界(包括此边界的两个顶点)总之,若(LP)问题有最优解,则最优解一定可以在凸多边形的某个顶点达到3、若(LP)问题有可行解,但没有有限最优解,此时凸多边形 是无界的(反之不成立)4、若(LP)问题没有可行解,则该问题没有最优解三、基与基本可行解nxxxX21ncccC21mnmmnnaaaaaaaaaA212222111211其中mbbbb210,0.max)(bXbAXtsCXzLP 问题对不妨设AX=b有解,且mn,解的结构:对b

21、AX,唯一解若nrArAr)()(有无穷多解bAX 利用线性代数的方法求出无穷多解?只讨论rn,此时nrArAr)()(有解的充要条件是且r(A)=r=m(若rm,必有多余方程,可去掉)0,0.max)(bXbAXtsCXzLP问题对由线性代数结论知:若r(A)=m,则A 中至少存在一个m阶子式|B|0即A中存在满秩的m阶矩阵B,称B为(LP)问题的一个基325323222432143214321xxxxxxxxxxxx例如:321115323221121A110100000021121,对bAX nrArAr)()(且不妨设mn321110000021121mArAr2)()(定义1.3 在

22、(LP)问题中,A的任意一个mm阶 的非奇异子方阵B(即|B|0)称为 (LP)问题的一个基一个线性规划问题最多有 基mnC0,0.max)(bXbAXtsCXzLP问题对设r(Amxn)=r=m0,2162.7max211212121xxxxxxxtsxxz对线性规划问题例0,2162.7max543215142132121xxxxxxxxxxxxxt sxxz其标准型为100010101100121A系数矩阵54321PPPPP5432PPPB 3211PPPB 基基4323PPPB 不是基设r(A)=m0基本可行解非退化基本可行解退化基本可行解退化基本可行解:基本可行解中,存在取0值的基

23、变量非退化基本可行解:基本可行解中,基变量的取值均0对应的基称为退化基对应的基称为非退化基,即001bBX01bB线性规划问题非退化的线性规划问题退化的线性规划问题:存在退化基:所有基均非退化mBxxxX21得,bAX 即对01nmNxxX令m1.运输问题建模:运输问题要解决的问题是:如何利用现有的交通条件,以最低的运费安排调度小?方案,才能使总运费最安排运输体数据如下表,应如何同,单位运价不同,具置不吨,由于工厂和仓库位吨、吨、以供应上述原料,可、吨,另外有三座仓库吨、吨、分别是,数量,它们需要同一种原料、设有三个工厂7782564110272321321AAABBBB1B2B3产量A148

24、856A216241682A38162477需求量7210241215供销平衡作业:B1B2B3产量A148856A216241682A38162477需求量 7210241215的数量运到表示由设jiijBAx)3,2,1;3,2,1(ji则该问题的数学模型为:表示总运费Z33323123222113121124168162416884minxxxxxxxxxZts.56131211xxx82232221xxx77333231xxx72312111xxx102322212xxx41332313xxx0ijx32132min2xxxz已知线性规划问题、式试将此问题化为标准型无符号限制321321321321,62,0632442392.xxxxxxxxxxxxts答案:)(324max3321xxxxg7)(2.13321sxxxxts2)(2323321sxxxx0,0,0,0,0,0,03213321sssxxxx原线性规划问题的标准型为:4)(3243321xxxx432sx0,50212034.3050max321212121xxxxxxtsxxz划用图解法解以下线性规0,142.23min421212121xxxxxxtsxxz划用图解法解以下线性规、1422121xxxx解1*2*21xx,最优解8*Z最优值20*15*21xx,最优解1350*Z最优值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(确定决策变量-即用变量取不同的值来表示可供选择的课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|