1、新高一数学上期末模拟试题(带答案)一、选择题1已知函数, 满足对任意的实数x1x2都有0成立,则实数a的取值范围为()A(,2)BC(,2D2已知,则的大小关系为 ( )ABCD3在实数的原有运算法则中,补充定义新运算“”如下:当时,;当时,已知函数,则满足的实数的取值范围是( )ABCD4定义在上的偶函数满足:对任意的,有,则( )ABCD5已知函数 ,则的零点个数为( )A3B4C5D66用二分法求方程的近似解,求得的部分函数值数据如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程的近似解
2、可取为ABCD7定义在上的奇函数,当时,则不等式的解集为ABCD8已知函数f(x)则)等于()A4B2C2D19若,则( )ABCD10函数f(x)是定义在R上的偶函数,在(,0上是减函数且f(2)=0,则使f(x)0的x的取值范围( )A(,2)B(2,+)C(,-2)(2,+)D(2,2)11下列函数中,在区间上为减函数的是ABCD12已知函数,对任意的总有,且,则( )ABCD二、填空题13若函数有两个不同的零点,则实数的取值范围是_.14已知幂函数在上是减函数,则_15已知,集合,且函数是偶函数,则的取值范围是_.16已知,对于任意的,总存在,使得或,则实数的取值范围是_.17若函数f
3、(x)是定义在R上的偶函数,在(,0上是减函数,且f(2)0,则使得f(x)0的x的取值范围是_18若当时,不等式恒成立,则实数a的取值范围是_.19已知正实数满足,则的值为_.20若集合且则实数_.三、解答题21定义在上的函数满足,且函数在上是减函数.(1)求,并证明函数是偶函数;(2)若,解不等式.22已知.(1)求函数的定义域;(2)求证:为偶函数;(3)指出方程的实数根个数,并说明理由.23节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的
4、污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第n次改良后所排放的废气中的污染物数量,可由函数模型给出,其中n是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)24已知函数是定义在上的奇函数,当时,.(1)求的解析式;(2)若是上的单调函数,求实数的取值范围.25已知,.(1)判断函数的奇偶性;(2)求的值.26记关于的不等式的解集为,不等式的
5、解集为(1)若,求集合;(2)若且,求的取值范围【参考答案】*试卷处理标记,请不要删除一、选择题1B解析:B【解析】【分析】【详解】试题分析:由题意有,函数在上为减函数,所以有,解出,选B.考点:分段函数的单调性.【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数,都有成立,得出函数在上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点处,有,解出. 本题容易出错的地方是容易漏掉分界点处的情况.2B解析:B【解析】【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与进行大小比较,得知,再利用换底公式得出、的大小,从而得出三个数的大小关系【详解
6、】函数在上是增函数,则,函数在上是增函数,则,即,即,同理可得,由换底公式得,且,即,因此,故选A【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是与,步骤如下:首先比较各数与零的大小,确定正负,其中正数比负数大;其次利用指数函数或对数函数的单调性,将各数与进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系3C解析:C【解析】当时,;当时,;所以,易知,在单调递增,在单调递增,且时,时,则在上单调递增,所以得:,解得,故选C点睛:新定义的题关键是读懂题意,根据条件,得到,通过单调性分析,得到在上单调递增,解不等式,要符合定
7、义域和单调性的双重要求,则,解得答案4A解析:A【解析】由对任意x1,x2 0,)(x1x2),有 0,得f(x)在0,)上单独递减,所以,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行5C解析:C【解析】【分析】由题意,函数的零点个数,即方程的实数根个数,设,则,作出的图象,结合图象可知,方程有三个实根,进而可得答案.【详解】由题意,函数的零点个数,即方程的实数根个数,设,则,作出的图象,如图所示,结合图象可知,方程有三个实根,则 有一个解,有一个解,有三个
8、解,故方程有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.6C解析:C【解析】【分析】利用零点存在定理和精确度可判断出方程的近似解.【详解】根据表中数据可知,由精确度为可知,故方程的一个近似解为,选C.【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.7B解析:B【解析】【分
9、析】当时,为单调增函数,且,则的解集为,再结合为奇函数,所以不等式的解集为【详解】当时,所以在上单调递增,因为,所以当时,等价于,即,因为是定义在上的奇函数,所以 时,在上单调递增,且,所以等价于,即,所以不等式的解集为【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反8B解析:B【解析】,则,故选B.9A解析:A【解析】因为,所以,由于,所以,应选答案A 10D解析:D【解析】【分析】根据偶函数的性质,求出函数在(,0上的解集,再根据对称性即可得出答案.【详解】由函数为偶函数,所以,又因为函数在(,0是减函数,
10、所以函数在(,0上的解集为,由偶函数的性质图像关于轴对称,可得在(0,+ )上的解集为(0,2),综上可得,的解集为(-2,2).故选:D.【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.11D解析:D【解析】试题分析:在区间上为增函数;在区间上先增后减;在区间上为增函数;在区间上为减函数,选D.考点:函数增减性12B解析:B【解析】由题意,f(x)+f(x)=0可知f(x)是奇函数,g(1)=1,即f(1)=1+1=2那么f(1)=2故得f(1)=g(1)+1=2,g(1)=3,故选:B二、填空题13【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作
11、出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本解析:【解析】【分析】令,可得,从而将问题转化为和的图象有两个不同交点,作出图形,可求出答案.【详解】由题意,令,则,则和的图象有两个不同交点,作出的图象,如下图,是过点的直线,当直线斜率时,和的图象有两个交点.故答案为:.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.14-3【解析】【分析】根据函数是幂函数可求出m再根据函数是减函数知故可求出m【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点
12、睛】本题主要考查了幂函数的概念幂函数的增减性属于解析:-3【解析】【分析】根据函数是幂函数可求出m,再根据函数是减函数知,故可求出m.【详解】因为函数是幂函数所以,解得或.当时,在上是增函数;当时,在上是减函数,所以.【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.15【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】函数是偶函数即平方后整理得由得故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇解析:【解析】【分析】由函数是偶函数,求出,这样可求得集合,得的取值范围,从而可得结论【详解】函数是偶函数,即,平方后整理得,
13、由,得故答案为:【点睛】本题考查函数的奇偶性,考查解一元二次不等式解题关键是由函数的奇偶性求出参数16【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的解析:【解析】【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解的值域,结合已知条件推出的范围即可.【详解】由题意,对于任意的,总存在,使得或,则与的值域的并集为,又,结合分段函数的性质可得,的值域为,当时,可知的值域为,所以,此时有,解得,当时,的值域为,满足题意,综上所述,实数
14、的范围为.故答案为:.【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.17(22)【解析】【详解】函数f(x)是定义在R上的偶函数且在(0)上是增函数又f(2)0f(x)在(0)上是增函数且f(2)f(2)0当x2时f(x)0即f(x)解析:(2,2)【解析】【详解】函数f(x)是定义在R上的偶函数,且在(,0)上是增函数,又f(2)0,f(x)在(0,)上是增函数,且f(2)f(2)0,当x2时,f(x)0,即f(x)0的解为(2,2),即不等式的解集为(2,2),故填(2,2).18【解析】【分析】用换元法把不等式转化为二次不等式然后用分离
15、参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时即综上故答案为:【解析:【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设,是增函数,当时,不等式化为,即,不等式在上恒成立,时,显然成立,对上恒成立,由对勾函数性质知在是减函数,时,即综上,故答案为:【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值19【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查
16、指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题解析:【解析】【分析】将已知等式,两边同取以为底的对数,求出,利用换底公式,即可求解.【详解】,.故答案为:.【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.20或【解析】【分析】先解二次不等式可得再由讨论参数两种情况再结合求解即可【详解】解:解不等式得即当时满足当时又则解得又则综上可得或故答案为:或【点睛】本题考查了二次不等式的解法空集的定义及集合的包解析:或【解析】【分析】先解二次不等式可得,再由,讨论参数,两种情况,再结合求解即可.【详解】解:解不等式,得,即,当时,满足,当时,又,则,解得,又
17、,则,综上可得或,故答案为:或.【点睛】本题考查了二次不等式的解法、空集的定义及集合的包含关系,重点考查了分类讨论的数学思想方法,属基础题.三、解答题21(1),证明见解析;(2)【解析】【分析】(1)根据函数解析式,对自变量进行合理赋值即可求得函数值,同时也可以得到与之间的关系,进而证明;(2)利用函数的奇偶性和单调性,合理转化求解不等式即可.【详解】(1)令,则,得,再令,可得,得,所以,令,可得,又该函数定义域关于原点对称,所以是偶函数,即证.(2)因为,又该函数为偶函数,所以.因为函数在上是减函数,且是偶函数所以函数在上是增函数.又,所以,等价于或解得或.所以不等式的解集为.【点睛】本
18、题考查抽象函数求函数值、证明奇偶性,以及利用函数奇偶性和单调性求解不等式.22(1);(2)证明见解析;(3)两个,理由见解析.【解析】【分析】(1)根据对数函数的真数大于,列出不等式组求出的取值范围即可;(2)根据奇偶性的定义即可证明函数是定义域上的偶函数(3)将方程变形为,即,设(),再根据零点存在性定理即可判断.【详解】解:(1) ,解得,即函数的定义域为;(2)证明:对定义域中的任意,都有函数为偶函数;(3)方程有两个实数根,理由如下:易知方程的根在内,方程可同解变形为,即设().当时,为增函数,且,则在内,函数有唯一零点,方程有唯一实根,又因为偶函数,在内,函数也有唯一零点,方程有唯
19、一实根,所以原方程有两个实数根.【点睛】本题考查函数的定义域和奇偶性的应用问题,函数的零点,函数方程思想,属于基础题23(1) (2)6次【解析】【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可;(2)结合题意解指数不等式即可.【详解】解:(1)由题意得,所以当时,即,解得,所以,故改良后所排放的废气中含有的污染物数量的函数模型为.(2)由题意可得,整理得,即,两边同时取常用对数,得,整理得,将代入,得,又因为,所以.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题.24(1)
20、;(2)【解析】【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围即时要是增函数,且端点处函数值不小于0.【详解】解:(1)因为函数是定义在上的奇函数,所以,当时,则,所以,所以.(2)若是上的单调函数,且,则实数满足,解得,故实数的取值范围是.【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系25(1)为奇函数;(2)20【解析】【分析】(1)先求得函数的定义域,然后由证得为奇函数.(2)根据为奇函数,求得,从而得到,由此求得所求表达式的值.【详解】(1),定义域为,当时,. 因为,所以为奇函数. (2)由(1)得,于是.所以【点睛】本小题主要考查函数奇偶性的判断,考查利用函数的奇偶性进行计算,属于基础题.26(1)(2)【解析】试题分析:(1)当时,利用分式不等式的解法,求得;(2)根据一元二次不等式的求解方法,解得,由于,故.,则.试题解析:(1)当时, 原不等式为:集合(2)易知:,;由,则,的取值范围为