1、线性规划应用题例(2004年江苏卷)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100和50,可能的最大亏损率分别为30和10.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?例(2010广东卷)某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营
2、养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?例预算用2000元购买单价为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子数不少于桌子数且不多于桌子数的1.5倍,问桌、椅各买多少才行?练习:P89例3、变式训练3作业(2003年北京卷)某厂生产A、B两种产品,需甲、乙、丙三种原料,每生产一吨产品需耗原料如下表.现有甲原料200吨,乙原料360吨,丙原料300吨,若产品生产后能全部销售,试问A、B各生产多少吨能获最大利
3、润.甲乙丙利润(万元/吨)A产品4937B产品541012(2007山东)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?线性规划应用题答案(2004年江苏卷)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100和50,
4、可能的最大亏损率分别为30和10.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?解:设投资人分别用x万元、y万元投资甲、乙两个项目.由题意知目标函数z=x+0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线,并作平行于直线的一组直线与可行域相交,其中有一条直线经过可行域上的M点,且与直线的距离最大,这里M点是直线和的交点.解方程组得x=4,y=6此时(万元).当x=4,y=6时z取得最大值.答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的提下,
5、使可能的盈利最大.(2010广东卷)某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?解:设该儿童分别预订个单位的午餐和晚餐,共花费元,则。可行域为12x+8y646x+6y426x+10y54.即x0,xNy0,yN3
6、x+2y16x+y73x+5y27x0,xNy0,yN,作出可行域如图所示:经试验发现,当x=4,y=3时,花费最少,为=2.54+43=22元预算用2000元购买单价为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子数不少于桌子数且不多于桌子数的1.5倍,问桌、椅各买多少才行?解:设购买桌子x张,椅子y张,其总数为z,根据题意得约束条件为目标函数为z=x+y,作出可行域(如图)作出直线向右上方平称到l位置,使l经过直线的交点A,此时z应取得最大值.解由问题的实质意义知y应取整数.又由.得y=37.x=25,y=37是符合条件的最优解答:应买桌子25张,椅子37张.练习:P89例
7、3、变式训练3作业:(2003年北京卷)某厂生产A、B两种产品,需甲、乙、丙三种原料,每生产一吨产品需耗原料如下表.现有甲原料200吨,乙原料360吨,丙原料300吨,若产品生产后能全部销售,试问A、B各生产多少吨能获最大利润.甲乙丙利润(万元/吨)A产品4937B产品541012解:设生产A产品x吨,B产品y吨,利润为z.则z=7x+12y由条件可知得P(20,24)即x=20,y=24时z最大.答:A产品生产20吨,B产品生产24吨时获利最大.(2007山东)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分
8、钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?0100200300100200300400500yxlM解:设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得目标函数为二元一次不等式组等价于作出二元一次不等式组所表示的平面区域,即可行域如图:作直线,即平移直线,从图中可知,当直线过点时,目标函数取得最大值联立解得点的坐标为(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元