1、线段的和差最值问题解题策略一、引例二、解题策略三、例题例一:(09 济南)ACxyBO 已知:抛物线的对称轴为与轴交于两点,与轴交于点其中、(1)求这条抛物线的函数表达式(2)已知在对称轴上存在一点P,使得的周长最小请求出点P的坐标(3)若点是线段上的一个动点(不与点O、点C重合)过点D作交轴于点连接、设的长为,的面积为求与之间的函数关系式试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由变式练习:(09 内江)例二:(2008 福州)四、课堂练习1、变式:2、在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在轴、轴的正半轴上,D为边OB的中点.()若为边上的一个动点,
2、当的周长最小时,求点的坐标;yBODCAxEyBODCAx()若、为边上的两个动点,且,当四边形的周长最小时,求点、的坐标.3、如图,已知点A(-4,8)和点B(2,n)在抛物线上(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线,记平移后点A的对应点为A,点B的对应点为B,点C(-2,0)和点D(-4,0)是x轴上的两个定点当抛物线向左平移到某个位置时,AC+CB 最短,求此时抛物线的函数解析式;4x22A8-2O-2-4y6BCD-44当抛物线向左或向右平移时,是否存在某个位置,使四边形ABCD的周长最短?若存在,求出此时抛
3、物线的函数解析式;若不存在,请说明理由变式2答案解析解:(1)由题意得2分解得此抛物线的解析式为3分(2)连结、.因为的长度一定,所以周长最小,就是使最小.点关于对称轴的对称点是点,与对称轴的交点即为所求的点.(第24题图)OACxyBEPD设直线的表达式为则4分解得此直线的表达式为5分把代入得点的坐标为6分(3)存在最大值7分理由:即即方法一:连结=8分当时,9分方法二: =8分当时,9分解:()如图,作点D关于轴的对称点,连接与轴交于点E,连接.若在边上任取点(与点E不重合),连接、.yBODCAxE由,可知的周长最小. 在矩形中,为的中点, ,. OEBC, RtRt,有. . 点的坐标
4、为(1,0). 6分yBODCAxEGF()如图,作点关于轴的对称点,在边上截取,连接与轴交于点,在上截取. GCEF, 四边形为平行四边形,有.又 、的长为定值, 此时得到的点、使四边形的周长最小. OEBC, RtRt, 有 . . . 点的坐标为(,0),点的坐标为(,0). 10分(第24题(1)4x22A8-2O-2-4y6BCD-44QP解:(1) 将点A(-4,8)的坐标代入,解得1分将点B(2,n)的坐标代入,求得点B的坐标为(2,2),1分则点B关于x轴对称点P的坐标为(2,-2)1分直线AP的解析式是1分令y=0,得即所求点Q的坐标是(,0)1分(第24题(2)4x22A8
5、-2O-2-4y6BCD-44A(2)解法1:CQ=-2-=,1分故将抛物线向左平移个单位时,AC+CB最短,2分此时抛物线的函数解析式为1分解法2:设将抛物线向左平移m个单位,则平移后A,B的坐标分别为A(-4-m,8)和B(2-m,2),点A关于x轴对称点的坐标为A(-4-m,-8)直线AB的解析式为1分要使AC+CB最短,点C应在直线AB上,1分将点C(-2,0)代入直线AB的解析式,解得1分(第24题(2)4x22A8-2O-2-4y6BCD-44AB故将抛物线向左平移个单位时AC+CB最短,此时抛物线的函数解析式为1分左右平移抛物线,因为线段AB和CD的长是定值,所以要使四边形ABC
6、D的周长最短,只要使AD+CB最短; 1分第一种情况:如果将抛物线向右平移,显然有AD+CBAD+CB,因此不存在某个位置,使四边形ABCD的周长最短1分第二种情况:设抛物线向左平移了b个单位,则点A和点B的坐标分别为A(-4-b,8)和B(2-b,2)因为CD=2,因此将点B向左平移2个单位得B(-b,2),要使AD+CB最短,只要使AD+DB最短 1分点A关于x轴对称点的坐标为A(-4-b,-8),直线AB的解析式为 1分要使AD+DB最短,点D应在直线AB上,将点D(-4,0)代入直线AB的解析式,解得故将抛物线向左平移时,存在某个位置,使四边形ABCD的周长最短,此时抛物线的函数解析式为 1分