1、29.2 三视图第二十九章 投影与视图导入新课讲授新课当堂练习课堂小结第1课时 三视图1.会从投影的角度理解视图的概念,明确视图与投影 的关系.2.能识别物体的三视图,会画简单几何体的三视图.(重点、难点)学习目标导入新课导入新课情境引入“横看成岭侧成峰,远近高低各不同不识庐山真面目,只缘身在此山中”你能说明是什么原因吗?三视图的概念及关系一讲授新课讲授新课观察与思考 下图为某飞机的设计图,你能指出这些设计图是从哪几个方向来描绘物体的吗?当我们从某一方向观察一个物体时,所看到的图形叫做物体的一个视图视图也可以看作物体在某一个方向的光线下的正投影,对于同一物体,如果从不同方向观察,所得到的视图可
2、能不同本章中我们只讨论三视图.正面1.三个投影面 我们用三个互相垂直的平面(例如:墙角处的三面墙面)作为投影面,其中正对着我们的叫正面,正面下方的叫水平面,右边的叫做侧面.主视图主视图俯视图左视图正面高长宽宽2.三视图俯视图左视图 将三个投影面展开在一个平面内,得到这个物体的一张三视图.三视图是主视图、俯视图、左视图的统称.它是从三个方向分别表示物体形状的一种常用视图.主视图主视图俯视图左视图正面高长宽宽俯视图左视图例1 画出图中基本几何体的三视图:三视图的画法二典例精析主视图宽左视图解:如图所示:俯视图主视图左视图俯视图3.在主视图正右方画出左视图,注意与主视图高平齐,与俯视图宽相等;1.确
3、定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注 意与主视图长对正;三视图的具体画法为:主视图俯视图左视图高长宽宽注意:不可见的轮廓线,用虚线画出.归纳:4.为表示圆柱、圆锥等的对称轴,规定在视图中加画 点划线表示对称轴.例2 画出如图所示的支架的三视图,其中支架的两个台阶的高度和宽度相等解:下图是支架的三视图主视图俯视图左视图 画出图中的几何体的三视图.练一练例3 画出图中简单组合体的三视图:主视图左视图俯视图解:三视图如下:俯视图 ()左视图 ()主视图 ()ABCAAB找出对应的的三视图.练一练当堂练习当堂练习1下图的几何体中,主视图、左视图、俯视图均相 同的是 ()2一个几
4、何体的三视图形状都相同,大小均等,那 么这个几何体不可以是 ()A球 B三棱锥 C正方体 D圆柱DDA B C D3将矩形硬纸板绕它的一条边旋转180所形成的 几何体的主视图和俯视图不可能是 ()A矩形,矩形 B半圆、矩形 C圆、矩形 D矩形、半圆C4如图摆放的几何体的俯视图是 ()BA B C D5下图中表示的是组合在一起的模块,那么这个 模块的俯视图的是 ()A B C DA 主视图左视图俯视图6.画出下列几何体的三视图.三视图三视图的概念及关系课堂小结课堂小结三视图的画法简单几何体的三视图1.2.3 相反数第一章 有理数导入新课讲授新课当堂练习课堂小结1.2 有理数学习目标1.借助数轴理
5、解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称.(难点)2.会求有理数的相反数.(重点)导入新课导入新课情境引入1 成语故事南辕北辙讲了一个人 如果点O表示魏国的位置,点A表示楚国的位置,假设楚国与魏国相距30 km,以魏国为原点0,我们规定向南为正方向,而此人从魏国出发向北到了点B也走了30 km,请同学们把这3个点在数轴上表示出来现在的位置魏国楚国OBA-30 -20 -10 0 10 20 30 两位同学背靠背,规定向前为正,一人向前走3步,记作 ,一人向后走3步 ,记作 .对照数轴,说出-3与+3两数的相同点和不同点.你还能说出具备这些特征的成对的数吗?情境引入2活动1:观察
6、下列一组数1和1,2.5和2.5,4和4,并把它们在数轴上表示出来.思考:1)上述各对数之间有什么特点?2)请写出一组具有上述特点的数 3)你能得出相反数的概念吗?4)表示各对数的点在数轴上有什么位置关系?相反数一探究一 相反数的概念讲授新课讲授新课活动2:请观察这两个数,它们有什么异同点?你还能列举两个这样的数吗?5.25.2数字相同符号不同1.定义:只有符号不同的两个数叫做互为相反数.2.一般地,a和-a互为相反数.要点归纳代数意义 判断题:(1)5是5的相反数;()(2)5是相反数;()(3)与 互为相反数;()(4)5和5互为相反数;()21221(5)相反数等于它本身的数只有0;(6
7、)符号不同的两个数互为相反数.练一练结合数轴考虑:0的相反数是_._.一个正数的相反数是一个。一个负数的相反数是一个。负数正数一个数的相反数是它本身的数是 _0 00 0思考:在数轴上,画出几组表示相反数的点,并观 察这两个点具有怎样的特征?位于原点两侧,且与原点的距离相等.05-5-11探究二 相反数的几何意义a-a思考:数轴上到原点的距离相等的点所表示的数有什 么特点?借助数轴填一填:1.数轴上与原点距离是2的点有_个,这些点表示的 数是_;2.与原点的距离是5的点有_个,这些点表示的数是 _.02-2两 2和-25和-5两 5-51.互为相反数的两个数分别位于原点的两侧(0除外);2.互
8、为相反数的两个数到原点的距离相等.要点归纳几何意义3.一般地,设a是一个正数,数轴上与原点的距离是 a的点有两个,它们分别在原点的两侧,表示a和 -a,这两点关于原点对称.1.一般地,设a是一个正数,数轴上与原点的距离是a的点有_个,它们分别在原点的_,表示_,我们说这两点_.两左右-a和a关于原点对称归纳总结多重符号的化简二问题1:a的相反数是什么?在这个数前加一个“”号问题2:如何求一个数的相反数?a 的相反数是a,a可表示任意有理数.(1.1)表示什么?(7)呢?(9.8)呢?它们的结果应是多少?问题3:若把 a分别换成5,7,0时,这些数的相 反数怎样表示?a =+5,-a =-(+5
9、)a =-7,-a =-(-7)a =0,-a =0 (1)是_的相反数,(2)是_的相反数,=_ (3)是_的相反数,(4)是_的相反数,4_41.7_1.7100_10015157.17.11001004-4)51()51(填一填思考:如果在一个数前面加上“”号所得得到的 结果是什么呢?归纳总结在一个数前面加上“”号表示求这个数的相反数.化简下列各数(先读后写)(1)-(+10)(2)+(-0.15)(3)+(+3)(4)-(-12)(5)+-(-1.1)(6)-+(-7)例2(6)-+(-7)=-(-7)=7.由内向外依次去括号方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若
10、有偶数个,则结果为正;若有奇数个,则结果为负.解:(1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=3;(4)-(-12)=12;(5)+-(-1.1)=+(+1.1)=1.1;技巧:技巧:(一查二定)(一查二定)1.1.式子中含偶数个式子中含偶数个“”号时,结果正;号时,结果正;含含奇数个奇数个“”号号时,结果为时,结果为负负。2.2.凡是凡是“+”+”都去掉。都去掉。1-1.6是_的相反数,_的相反数是0.32下列几对数中互为相反数的一对为()A 和 B 与 C 与35的相反数是_;a的相反数是_;)8()8()8()8()8()8(1.6-a-5C-0.3
11、当堂练习当堂练习4若a=-13,则-a=_;若-a=-6,则a=_ 5若a是负数,则-a是_数;若-a是负数,则 a是_数6.的相反数是_,-3x的相反数是_.2x2x136正3x正7.(1)若a=3.2,则-a=;(2)若-a=2,则a=;(3)若-(-a)=3,则-a=;(4)-(a-b)=.能力拓展-2-3.2-3b-a8.若2x+1是-9的相反数,求x的值.解:由相反数的意义,得 2x+1=9 2x=8 x=4拓展思考:已知两个有理数x、y,且x+y=0,那么这两个有理数有什么关系?课堂小结课堂小结1.相反数的概念:只有符号不同的两个数叫做 互为相反数;特别地,0的相反数是0.2 表示 的相反数.aa