1、导入新课讲授新课当堂练习课堂小结19.2.1 正比例函数第十九章 一次函数第1课时 正比例函数的概念情境引入学习目标1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.(重点、难点)导入新课导入新课情景引入 如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量,眼睛的数量,腿的数量,扑通声,你能列出相应的函数解析式吗?y=xy=2xy=4xy=x讲授新课讲授新课正比例函数的概念一问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l 随半径r的变化而变化(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(
2、单位:cm3)的变化而变化(1)2lr(2)7.8mV(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化(4)冷冻一个0的物体,使它每分钟下降2,物体温度T(单位:)随冷冻时间t(单位:min)的变化而变化(3)h=0.5n(4)T=-2t 问题2 认真观察以上出现的四个函数解析式,分别说出哪些是函数、常量和自变量这些函数解析式有什么共同点?这些函数解析式都是常数与自变量的乘积的形式!2,rl7.8VmhTt0.5-2n函数=常数自变量ykx知识要点 一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数思考为什
3、么强调k是常数,k0呢?y =k x (k0的常数)比例系数自变量正比例函数一般形式注:正比例函数y=kx(k0)的结构特征 k0 x的次数是11.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?(2)21;yx(3);2xy(6)3.yx(1)3;yx2(4);yx(5);yx是,3不是是,不是是,12是,3试一试2.回答下列问题:(1)若y=(m-1)x是正比例函数,m取值范围是 ;(2)当n 时,y=2xn是正比例函数;(3)当k 时,y=3x+k是正比例函数.试一试m1=1=0函数是正比例函数函数解析式可转化为y=kx(k是常数,k 0)的形式.即 m1,m=1,m=
4、-1.解:函数 是正比例函数,2(1)mymx m-10,m2=1,例1 已知函数 y=(m-1)是正比例函数,求m的值.2mx典例精析变式训练(1)若 是正比例函数,则m=;|1(2)mymx-=-(2)若 是正比例函数,则m=;2(-1)-1ymxm=+-2-1 m-20,|m|-1=1,m=-2.m-10,m2-1=0,m=-1.解:(1)设正比例函数解析式是 y=kx,把 x=-4,y=2 代入上式,得 2=-4k,所求的正比例函数解析式是 y=-;2x解得 k=-,21(2)当 x=6 时,y=-3.例2 若正比例函数的自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式
5、;(2)求当x=6时函数y的值.设代求写待定系数法做一做已知y与x成正比例,当x等于3时,y等于-1.则当x=6时,y的值为 .-2问题3 2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?正比例函数的简单应用二(1)乘京沪高速列车,从始发站北京南站到终点站海虹桥站,约需要多少小时(结果保留小数点后一位)?13183004
6、.4(小时)(2)京沪高铁列车的行程y(单位:千米)与运行时间t(单位:时)之间有何数量关系?y=300t(0t4.4)(3)京沪高铁列车从北京南站出发2.5小时后,是否已经过了距始发站1 100 千米的南京站?y=3002.5=750(千米),这时列车尚未 到 达 距 始 发 站 1 100千米的南京站.例3 已知某种小汽车的耗油量是每100km耗油15L所使用的汽油为5元/L(1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间的函数关系式,并指出y是x的什么函数;(2)计算该汽车行驶220 km所需油费是多少?34yx即 .0 x 解:(1)y=515x100,32201654y(
7、2)当x=220 时,答:该汽车行驶220 km所需油费是165元.y是x的正比例函数.列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数 (1)正方形的边长为xcm,周长为ycm.y=4x 是正比例函数 (2)某人一年内的月平均收入为x元,他这年(12个月)的总收入为y元 y=12x 是正比例函数 (3)一个长方体的长为2cm,宽为1.5cm,高为xcm,体积为ycm3.y=3x 是正比例函数做一做1.下列函数关系中,属于正比例函数关系的是()A.圆的面积S与它的半径rB.行驶速度不变时,行驶路程s与时间tC.正方形的面积S与边长aD.工作总量(看作“1”)一定,工作效率w与工作时间
8、t当堂练习当堂练习B 2.下列说法正确的打“”,错误的打“”.(1)若y=kx,则y是x的正比例函数()(2)若y=2x2,则y是x的正比例函数()(3)若y=2(x-1)+2,则y是x的正比例函数()(4)若y=(2+k2)x,则y是x的正比例函数()注意:(1)中k可能为0;(4)中2+k20,故y是x的正比例函数.3.填空(1)如果y=(k-1)x,是y关于x的正比例函数,则k满足_.(2)如果y=kxk-1,是y关于x的正比例函数,则k=_.(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_.k124(4)若 是关于x的正比例函数,m=.-232)2(mxmy4.已知y-3与
9、x成正比例,并且x=4时,y=7,求y与x之间的函数关系式.解:依题意,设y-3与x之间的函数关系式为y-3=kx,x=4时,y=7,7-3=4k,解得k=1.y-3=x,即y=x+3.5.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割.(1)求收割的面积y(单位:公顷)与收割时间x(单位:时)之间的函数关系式;(2)求收割完这块麦田需用的时间.解:(1)y=0.5x;(2)把y=10代入y=0.5x中,得10=0.5x.解得x=20,即收割完这块麦田需要20小时.课堂小结课堂小结正比例函数的概念形式:y=kx(k0)求正比例函数的解析式利用正比例函数解决简单的实
10、际问题1.设2.代3.求4.写1.2.3 相反数第一章 有理数导入新课讲授新课当堂练习课堂小结1.2 有理数学习目标1.借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称.(难点)2.会求有理数的相反数.(重点)导入新课导入新课情境引入1 成语故事南辕北辙讲了一个人 如果点O表示魏国的位置,点A表示楚国的位置,假设楚国与魏国相距30 km,以魏国为原点0,我们规定向南为正方向,而此人从魏国出发向北到了点B也走了30 km,请同学们把这3个点在数轴上表示出来现在的位置魏国楚国OBA-30 -20 -10 0 10 20 30 两位同学背靠背,规定向前为正,一人向前走3步,记作 ,
11、一人向后走3步 ,记作 .对照数轴,说出-3与+3两数的相同点和不同点.你还能说出具备这些特征的成对的数吗?情境引入2活动1:观察下列一组数1和1,2.5和2.5,4和4,并把它们在数轴上表示出来.思考:1)上述各对数之间有什么特点?2)请写出一组具有上述特点的数 3)你能得出相反数的概念吗?4)表示各对数的点在数轴上有什么位置关系?相反数一探究一 相反数的概念讲授新课讲授新课活动2:请观察这两个数,它们有什么异同点?你还能列举两个这样的数吗?5.25.2数字相同符号不同1.定义:只有符号不同的两个数叫做互为相反数.2.一般地,a和-a互为相反数.要点归纳代数意义 判断题:(1)5是5的相反数
12、;()(2)5是相反数;()(3)与 互为相反数;()(4)5和5互为相反数;()21221(5)相反数等于它本身的数只有0;(6)符号不同的两个数互为相反数.练一练结合数轴考虑:0的相反数是_._.一个正数的相反数是一个。一个负数的相反数是一个。负数正数一个数的相反数是它本身的数是 _0 00 0思考:在数轴上,画出几组表示相反数的点,并观 察这两个点具有怎样的特征?位于原点两侧,且与原点的距离相等.05-5-11探究二 相反数的几何意义a-a思考:数轴上到原点的距离相等的点所表示的数有什 么特点?借助数轴填一填:1.数轴上与原点距离是2的点有_个,这些点表示的 数是_;2.与原点的距离是5
13、的点有_个,这些点表示的数是 _.02-2两 2和-25和-5两 5-51.互为相反数的两个数分别位于原点的两侧(0除外);2.互为相反数的两个数到原点的距离相等.要点归纳几何意义3.一般地,设a是一个正数,数轴上与原点的距离是 a的点有两个,它们分别在原点的两侧,表示a和 -a,这两点关于原点对称.1.一般地,设a是一个正数,数轴上与原点的距离是a的点有_个,它们分别在原点的_,表示_,我们说这两点_.两左右-a和a关于原点对称归纳总结多重符号的化简二问题1:a的相反数是什么?在这个数前加一个“”号问题2:如何求一个数的相反数?a 的相反数是a,a可表示任意有理数.(1.1)表示什么?(7)
14、呢?(9.8)呢?它们的结果应是多少?问题3:若把 a分别换成5,7,0时,这些数的相 反数怎样表示?a =+5,-a =-(+5)a =-7,-a =-(-7)a =0,-a =0 (1)是_的相反数,(2)是_的相反数,=_ (3)是_的相反数,(4)是_的相反数,4_41.7_1.7100_10015157.17.11001004-4)51()51(填一填思考:如果在一个数前面加上“”号所得得到的 结果是什么呢?归纳总结在一个数前面加上“”号表示求这个数的相反数.化简下列各数(先读后写)(1)-(+10)(2)+(-0.15)(3)+(+3)(4)-(-12)(5)+-(-1.1)(6)
15、-+(-7)例2(6)-+(-7)=-(-7)=7.由内向外依次去括号方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负.解:(1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=3;(4)-(-12)=12;(5)+-(-1.1)=+(+1.1)=1.1;技巧:技巧:(一查二定)(一查二定)1.1.式子中含式子中含偶数个偶数个“”号号时,结果时,结果正正;含含奇数个奇数个“”号号时,结果为时,结果为负负。2.2.凡是凡是“+”+”都去掉。都去掉。1-1.6是_的相反数,_的相反数是0.32下列几对数中互为相反数
16、的一对为()A 和 B 与 C 与35的相反数是_;a的相反数是_;)8()8()8()8()8()8(1.6-a-5C-0.3当堂练习当堂练习4若a=-13,则-a=_;若-a=-6,则a=_ 5若a是负数,则-a是_数;若-a是负数,则 a是_数6.的相反数是_,-3x的相反数是_.2x2x136正3x正7.(1)若a=3.2,则-a=;(2)若-a=2,则a=;(3)若-(-a)=3,则-a=;(4)-(a-b)=.能力拓展-2-3.2-3b-a8.若2x+1是-9的相反数,求x的值.解:由相反数的意义,得 2x+1=9 2x=8 x=4拓展思考:已知两个有理数x、y,且x+y=0,那么这两个有理数有什么关系?课堂小结课堂小结1.相反数的概念:只有符号不同的两个数叫做 互为相反数;特别地,0的相反数是0.2 表示 的相反数.aa