《相反数与绝对值》课件-(公开课获奖)2022年青岛版-6.ppt

上传人(卖家):ziliao2023 文档编号:6345151 上传时间:2023-06-29 格式:PPT 页数:27 大小:1.11MB
下载 相关 举报
《相反数与绝对值》课件-(公开课获奖)2022年青岛版-6.ppt_第1页
第1页 / 共27页
《相反数与绝对值》课件-(公开课获奖)2022年青岛版-6.ppt_第2页
第2页 / 共27页
《相反数与绝对值》课件-(公开课获奖)2022年青岛版-6.ppt_第3页
第3页 / 共27页
《相反数与绝对值》课件-(公开课获奖)2022年青岛版-6.ppt_第4页
第4页 / 共27页
《相反数与绝对值》课件-(公开课获奖)2022年青岛版-6.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、第二章第二章 有理数有理数2.3 2.3 相反数与绝对值相反数与绝对值第三课时第三课时一、新课引入 1、一个正数的绝对值是、一个正数的绝对值是_;一个负数的绝对值是一个负数的绝对值是_;0的绝对值是的绝对值是_.2、把课本、把课本12页图中的七天中每天的最低温度页图中的七天中每天的最低温度按从低到高的顺序排列出来按从低到高的顺序排列出来:_ _.3、按照上面的顺序把这些数表示在数轴上,你发现了什么?、按照上面的顺序把这些数表示在数轴上,你发现了什么?5 4 3 2 1 0-1-2-3-4 它本身它本身它的相反数它的相反数0-4,-3,-2,-1,0,1,2.12二、学习目标 会利用数轴比较有理

2、数的大小会利用数轴比较有理数的大小 理解比较有理数大小的规定理解比较有理数大小的规定 三、研读课文 认真阅读课本第认真阅读课本第12页至第页至第13页的内页的内 容,完成下面练习,并体验知识点的容,完成下面练习,并体验知识点的形成过程。形成过程。知识点一知识点一 数轴上各点所表示的数的数轴上各点所表示的数的大小顺序大小顺序1、把温度按从低到高的顺序排列后,在温、把温度按从低到高的顺序排列后,在温度计上所对应的点是从度计上所对应的点是从 到到 的的.按照这个顺序把这些数表示在数轴上,表示按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从它们的各点的顺序是从 到到 .下下上上左左右右三、研

3、读课文 2、在温度计上所对应的点的温度是下低、在温度计上所对应的点的温度是下低上高,在数轴上所对应的点的有理数是上高,在数轴上所对应的点的有理数是左小右大,它们一致吗?左小右大,它们一致吗?3、因此,数学中规定:在数轴上表示有、因此,数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从理数,它们从左到右的顺序,就是从 到到 _的顺序,即的顺序,即 _一致一致小小大大左边的数小于右边的数左边的数小于右边的数三、研读课文 练一练练一练 1、用数轴比较以下两个数的大小:、用数轴比较以下两个数的大小:12 0;2 0;30 -1;40 -4;53 -7;6 -100;7-5 -3;8-98 -2

4、;2、由上面的练习你发现了吗?1正数都 0,0 负数,正数 负数 (2)两个负数,绝对值大的_ .如:1 _ 0,0 _-1,-1 _-2.用“填空 1-1和-+2 解:先化简,-1=_,-(+2)=_.正数_负数,_,即-1_-(+2)三、研读课文 知识点二知识点二利用绝对值比较有理数的大小利用绝对值比较有理数的大小 2 和 解:这是两个_比较大小,先求它们的绝对值。=_,=_=_ 即 _ _218732187321873218731-2大于1-2负数732182192182193-和解:先化简,-=_,=_ _,-(-0.3)_ 三、研读课文 31313131注意:异号两数比较大小,要考虑

5、它们注意:异号两数比较大小,要考虑它们的的_;同号两数比较大小,要考虑它同号两数比较大小,要考虑它们的们的_.-535353-5=三、研读课文 3和 25.24 和 5343解:,又2.52.25,即 25.225.225.2,5.25.225.25.225.25.2解:43534343,53534353四、归纳小结 1、数学中规定:在数轴上表示有理数,、数学中规定:在数轴上表示有理数,它们从它们从 _到到_的顺序,就是从小的顺序,就是从小 到到 大大 的顺序,即的顺序,即 _2、都大于都大于0,0大于大于 ,正数,正数_ 负数负数 3、两个、两个 ,绝对值大的反,绝对值大的反_ 4、学习反思

6、:、学习反思:_ 左右左边的数小于右边的数正数负数大于负数而小五、强化训练 1、填空:(3)-_-0.76 (4)-_-(5)-3 _-3 (6)-_-243103113311035.35.32、以下实数中,比-1 小的数是 =A 五、强化训练 43324343,3232433210191101101,91)91(3、比较大小(1)和 (2)和3243)91(101解:解:101)91(五、强化训练 4、比较 的大小,正确的选项是 A、B、C、D、41,31,21413121314121213141412131A五、强化训练 5、a,b,c在数轴上的位置如图,1用,号填空;a_0,b_0,c_

7、0,a_-1,b_c.(2)把a,b,c,1,0用号连接起来。_b-1a0cThank you!确定二次函数的表达式学习目标学习目标1、会利用待定系数法求二次函数的表达式;、会利用待定系数法求二次函数的表达式;重点重点2、能根据条件,设出相应的二次函数的表达、能根据条件,设出相应的二次函数的表达式的形式,较简便的求出二次函数表达式。式的形式,较简便的求出二次函数表达式。难点难点课前复习课前复习二次函数有哪几种表达式?二次函数有哪几种表达式?一般式:一般式:y=ax2+bx+c (a0)(a0)顶点式:顶点式:y=a(x-h)2+k (a0)(a0)交点式:交点式:y=a(x-x1)(x-x2)

8、(a0)(a0)例题选讲例题选讲解:解:所以,设所求的二次函数为所以,设所求的二次函数为y=a(xy=a(x1)1)2 2-6-6由条件得:由条件得:点点(2,3)(2,3)在抛物线上,在抛物线上,代入上式,得代入上式,得3=a3=a2+12+12-6,2-6,得得 a=1 a=1所以,这个抛物线表达式为所以,这个抛物线表达式为 y=(xy=(x1)1)2 2-6-6即:即:y=xy=x2 2+2x+2x5 5例例 1 1例题例题封面封面因为二次函数图像的顶点坐标是因为二次函数图像的顶点坐标是1 1,6 6,抛物线的顶点为抛物线的顶点为1 1,6 6,与轴交点为,与轴交点为2 2,3 3求抛物

9、线的表达式?求抛物线的表达式?例题选讲解:解:设所求的二次函数为设所求的二次函数为y=ax2+bx+c将将A、B、C三点坐标代入得:三点坐标代入得:a-b+c=616a+4b+c=69a+3b+c=2解得:解得:所以:这个二次函数表达式为:所以:这个二次函数表达式为:a=1,b=-3,c=2y=x2-3x+2已知点已知点A(1,6)、)、B(2,3)和)和C(2,7),),求经过这三点的二次函数表达式。求经过这三点的二次函数表达式。oxy例例 2例题例题封面封面例题选讲解:解:所以设所求的二次函数为所以设所求的二次函数为y=a(xy=a(x1)(x1)(x1 1由条件得:由条件得:已知抛物线与

10、已知抛物线与X X轴交于轴交于A A(1 1,0 0),),B B(1,01,0)并经过点并经过点M M(0,10,1),求抛物线的表达式?),求抛物线的表达式?yox点点M(0,1)M(0,1)在抛物线上在抛物线上所以所以:a(0+1)(0-1)=1a(0+1)(0-1)=1得:得:a=-1a=-1故所求的抛物线表达式为故所求的抛物线表达式为 y=y=-(x(x1)(x-1)1)(x-1)即:即:y=y=x x2 2+1+1例题例题例例 3 3封面封面因为函数过因为函数过A A1 1,0 0,B B1,01,0两点两点 :小组探究小组探究1、二次函数对称轴为、二次函数对称轴为x=2,且过,且

11、过3,2、-1,10两点,求二次函数的表达式。两点,求二次函数的表达式。2、二次函数极值为、二次函数极值为2,且过,且过3,1、-1,1两点,求二次函数的表达式。两点,求二次函数的表达式。解:设解:设y=a(x-2)y=a(x-2)2 2-k-k解:设解:设y=a(x-h)y=a(x-h)2 2+2+2例题选讲例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系里现把它的图形放在坐标系里(如下图如下图),求抛物线的表达式,求抛物线的表达式 例例 4 4设抛物线的表达式为设抛物线的表达式

12、为y=axy=ax2 2bxbxc c,解:解:根据题意可知根据题意可知抛物线经过抛物线经过(0(0,0)0),(20(20,16)16)和和(40(40,0)0)三点三点 可得方程组可得方程组 通过利用给定的条件通过利用给定的条件列出列出a a、b b、c c的三元的三元一次方程组,求出一次方程组,求出a a、b b、c c的值,从而确定的值,从而确定函数的解析式函数的解析式过程较繁杂,过程较繁杂,评价评价封面封面练习练习例题选讲例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系里

13、现把它的图形放在坐标系里(如下图如下图),求抛物线的表达式,求抛物线的表达式 例例 4设抛物线为设抛物线为y=a(x-20)216 解:解:根据题意可知根据题意可知 点点(0,0)在抛物线上,在抛物线上,通过利用条件中的顶通过利用条件中的顶点和过原点选用顶点点和过原点选用顶点式求解,方法比较灵式求解,方法比较灵活活 评价评价 所求抛物线表达式为所求抛物线表达式为 封面封面练习练习用待定系数法求函数表达式的一般步骤用待定系数法求函数表达式的一般步骤:1、设出适合的函数表达式;、设出适合的函数表达式;2 2、把条件代入函数表达式中,得到关于待定、把条件代入函数表达式中,得到关于待定系数的方程或方程

14、组;系数的方程或方程组;3 3、解方程组求出待定系数的值;解方程组求出待定系数的值;4 4、写出一般表达式。写出一般表达式。课堂小结课堂小结求二次函数表达式的一般方法:求二次函数表达式的一般方法:图象上三点或三对的对应值,图象上三点或三对的对应值,通常选择一般式通常选择一般式图象的顶点坐标、对称轴或和最值图象的顶点坐标、对称轴或和最值 通常选择顶点式通常选择顶点式图象与图象与x轴的两个交点的横轴的两个交点的横x1、x2,通常选择交点式。通常选择交点式。yxo封面封面确定二次函数的表达式时,应该根据条件的特点,确定二次函数的表达式时,应该根据条件的特点,恰当地选用一种函数表达式。恰当地选用一种函数表达式。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(《相反数与绝对值》课件-(公开课获奖)2022年青岛版-6.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|