1、 (一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。 2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比 值。 例如 15 :10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表示) 15 10 3/2 前项 比号 后项 比值 3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。 也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。 4、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。 5、根据分数与除法的关系,
2、两个数的比也可以写成分数形式。 6、 比和除法、分数的联系: 比 前 项 比号“:” 后 项 比值 除 法 被除数 除号“” 除 数 商 分 数 分 子 分数线“” 分 母 分数值 7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。 8、根据比与除法、分数的关系,可以理解比的后项不能为 0。 9、体育比赛中出现两队的分是 2:0 等,这只是一种记分的形式,不表示两个数相除的关系。 10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分) 例如:15 10 151015103/2 更多学习资料 加 QQ2137626237 (二)、比的基本性质 1、根据比
3、、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。 分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。 3、根据比的基本性质,可以把比化成最简单的整数比。 4.化简比: (2)用求比值的方法。注意: 最后结果要写成比的形式。 例如: 1510 = 1510 =1510 3/2 = 32 还可以 1510 = 1510 = 3/2 最简整数比是 32 5、比中有单位的,化简和
4、求比值时要把单位化相同再化简和求比值,结果没有单位。 6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法 ,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几, 最后再用总量分别乘几分之几。 例如:有糖水 25 克,糖和水的比为 1:4,糖和水分别有几克? 1+4=5 糖占 1/5 用 251/5 得到糖的数量,水占 4/5 用 254/5 得到水的数量。 2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。 例如:有糖水 25 克,糖和水的比为 1:4,糖和水分别有几克? 糖和水的份数一共有 1+4=5 一份就是 255=5 糖有 1 份就是 51 水有 4 分就是 54