1、EE141 Digital Integrated Circuits2ndIntroduction1Jan M.RabaeyAnantha ChandrakasanBorivoje NikolicJuly 30,2002EE141 Digital Integrated Circuits2ndIntroduction2qIntroduction to digital integrated circuits.CMOS devices and manufacturing technology.CMOS inverters and gates.Propagation delay,noise margin
2、s,and power dissipation.Sequential circuits.Arithmetic,interconnect,and memories.Programmable logic arrays.Design methodologies.qWhat will you learn?Understanding,designing,and optimizing digital circuits with respect to different quality metrics:cost,speed,power dissipation,and reliabilityEE141 Dig
3、ital Integrated Circuits2ndIntroduction3qIntroduction:Issues in digital designqThe CMOS inverterqCombinational logic structuresqSequential logic gatesqDesign methodologiesqInterconnect:R,L and CqTimingqArithmetic building blocksqMemories and array structuresEE141 Digital Integrated Circuits2ndIntrod
4、uction4qWhy is designing digital ICs different today than it was before?qWill it change in future?EE141 Digital Integrated Circuits2ndIntroduction5The BabbageDifference Engine(1832)25,000 partscost:17,470EE141 Digital Integrated Circuits2ndIntroduction6EE141 Digital Integrated Circuits2ndIntroductio
5、n7First transistorBell Labs,1948EE141 Digital Integrated Circuits2ndIntroduction8Bipolar logic1960sECL 3-input GateMotorola 1966EE141 Digital Integrated Circuits2ndIntroduction919711000 transistors1 MHz operationEE141 Digital Integrated Circuits2ndIntroduction10EE141 Digital Integrated Circuits2ndIn
6、troduction11lIn 1965,Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.lHe made a prediction that semiconductor technology will double its effectiveness every 18 monthsEE141 Digital Integrated Circuits2ndIntroduction12161514131211109876543210195919601961196219
7、63196419651966196719681969197019711972197319741975LOG2 OF THE NUMBER OFCOMPONENTS PER INTEGRATED FUNCTIONElectronics,April 19,1965.EE141 Digital Integrated Circuits2ndIntroduction13EE141 Digital Integrated Circuits2ndIntroduction141,000,000100,00010,0001,000101001197519801985 19901995 20002005 20108
8、08680286i386i486PentiumPentium ProKPentium IIPentium IIICourtesy,IntelEE141 Digital Integrated Circuits2ndIntroduction1540048008808080858086286386486Pentium procP60.0010.010.1110100100019701980199020002010YearTransistors(MT)2X growth in 1.96 years!Transistors on Lead Microprocessors double every 2 y
9、earsCourtesy,IntelEE141 Digital Integrated Circuits2ndIntroduction1640048008808080858086286386486Pentium procP611010019701980199020002010YearDie size(mm)7%growth per year2X growth in 10 yearsDie size grows by 14%to satisfy Moores LawCourtesy,IntelEE141 Digital Integrated Circuits2ndIntroduction17P6P
10、entium proc486386286808680858080800840040.111010010001000019701980199020002010YearFrequency(Mhz)Lead Microprocessors frequency doubles every 2 yearsDoubles every2 yearsCourtesy,IntelEE141 Digital Integrated Circuits2ndIntroduction18P6Pentium proc486386286808680858080800840040.11101001971197419781985
11、19922000YearPower(Watts)Lead Microprocessors power continues to increaseCourtesy,IntelEE141 Digital Integrated Circuits2ndIntroduction195KW 18KW 1.5KW 500W 40048008808080858086286386486Pentium proc0.1110100100010000100000197119741978 198519922000 20042008YearPower(Watts)Power delivery and dissipatio
12、n will be prohibitiveCourtesy,IntelEE141 Digital Integrated Circuits2ndIntroduction2040048008808080858086286386486Pentium procP611010010001000019701980199020002010YearPower Density(W/cm2)Hot PlateNuclearReactorRocketNozzlePower density too high to keep junctions at low tempCourtesy,IntelEE141 Digita
13、l Integrated Circuits2ndIntroduction21Digital Cellular Market(Phones Shipped)1996 1997 1998 1999 2000Units 48M 86M 162M 260M 435MAnalog BasebandDigital Baseband(DSP+MCU)PowerManagementSmall Signal RFPowerRFCellPhoneEE141 Digital Integrated Circuits2ndIntroduction22 “Microscopic Problems”Ultra-high s
14、peed design Interconnect Noise,Crosstalk Reliability,Manufacturability Power Dissipation Clock distribution.Everything Looks a Little Different “Macroscopic Issues”Time-to-Market Millions of Gates High-Level Abstractions Reuse&IP:Portability Predictability etc.and Theres a Lot of Them!DSM 1/DSM?EE14
15、1 Digital Integrated Circuits2ndIntroduction231101001,00010,000100,0001,000,00010,000,000200319811983198519871989199119931995199719992001200520072009101001,00010,000100,0001,000,00010,000,000100,000,000Logic Tr./ChipTr./Staff Month.xxxxxxx21%/YpoundProductivity growth ratex58%/YpoundedComplexity gro
16、wth rate10,0001,0001001010.10.010.001Logic Transistor per Chip(M)0.010.11101001,00010,000100,000Productivity(K)Trans./Staff-Mo.Source:SematechComplexity outpaces design productivityComplexityCourtesy,ITRS RoadmapEE141 Digital Integrated Circuits2ndIntroduction24qTechnology shrinks by 0.7/generationq
17、With every generation can integrate 2x more functions per chip;chip cost does not increase significantlyqCost of a function decreases by 2xqBut How to design chips with more and more functions?Design engineering population does not double every two yearsqHence,a need for more efficient design method
18、s Exploit different levels of abstractionEE141 Digital Integrated Circuits2ndIntroduction25n+n+SGD+DEVICECIRCUITGATEMODULESYSTEMEE141 Digital Integrated Circuits2ndIntroduction26qHow to evaluate performance of a digital circuit(gate,block,)?Cost Reliability Scalability Speed(delay,operating frequenc
19、y)Power dissipation Energy to perform a functionEE141 Digital Integrated Circuits2ndIntroduction27q NRE(non-recurrent engineering)costs design time and effort,mask generation one-time cost factorq Recurrent costs silicon processing,packaging,test proportional to volume proportional to chip areaEE141
20、 Digital Integrated Circuits2ndIntroduction28EE141 Digital Integrated Circuits2ndIntroduction29Single dieWaferFrom http:/Going up to 12”(30cm)EE141 Digital Integrated Circuits2ndIntroduction30Fabrication capital cost per transistor(Moores law)EE141 Digital Integrated Circuits2ndIntroduction31%100per
21、 wafer chips ofnumber Totalper wafer chips good of No.Yyield Dieper wafer DiescostWafer cost Diearea die2diameterwafer area diediameter/2wafer per wafer Dies2EE141 Digital Integrated Circuits2ndIntroduction32area dieareaunit per defects1yield die is approximately 3 4area)(die cost diefEE141 Digital
22、Integrated Circuits2ndIntroduction33ChipMetal layersLine widthWafer costDef./cm2Area mm2Dies/waferYieldDie cost386DX20.90$9001.04336071%$4486 DX230.80$12001.08118154%$12Power PC 60140.80$17001.312111528%$53HP PA 710030.80$13001.01966627%$73DEC Alpha30.70$15001.22345319%$149Super Sparc30.70$17001.625
23、64813%$272Pentium30.80$15001.5296409%$417EE141 Digital Integrated Circuits2ndIntroduction34i(t)Inductive coupling Capacitive couplingPower and ground noisev(t)VDDEE141 Digital Integrated Circuits2ndIntroduction35V(x)V(y)VOHVOLVM VOHVOLfV(y)=V(x)Switching ThresholdNominal Voltage LevelsVOH=f(VOL)VOL=
24、f(VOH)VM=f(VM)EE141 Digital Integrated Circuits2ndIntroduction36VILVIHVinSlope=-1Slope=-1VOLVOHVout“0”VOLVILVIHVOHUndefinedRegion“1”EE141 Digital Integrated Circuits2ndIntroduction37Noise margin highNoise margin lowVIH VILUndefinedRegion10VOH VOLNMHNMLGate OutputGate InputEE141 Digital Integrated Ci
25、rcuits2ndIntroduction38qAllocates gross noise margin to expected sources of noiseqSources:supply noise,cross talk,interference,offsetqDifferentiate between fixed and proportional noise sourcesEE141 Digital Integrated Circuits2ndIntroduction39qAbsolute noise margin values are deceptive a floating nod
26、e is more easily disturbed than a node driven by a low impedance(in terms of voltage)qNoise immunity is the more important metric the capability to suppress noise sourcesq Key metrics:Noise transfer functions,Output impedance of the driver and input impedance of the receiver;EE141 Digital Integrated
27、 Circuits2ndIntroduction40v0v1v3finv(v)f(v)v3outv2inRegenerativeNon-Regenerativev2v1f(v)finv(v)v3outv0inEE141 Digital Integrated Circuits2ndIntroduction41 A chain of invertersv0v1v2v3v4v5v62V(Volt)4v0v1v2t(nsec)02 11356810 Simulated responseEE141 Digital Integrated Circuits2ndIntroduction42NFan-out
28、NFan-in MMEE141 Digital Integrated Circuits2ndIntroduction43Ri=Ro=0Fanout=NMH=NML=VDD/2 g=VinVoutEE141 Digital Integrated Circuits2ndIntroduction44NMHVin(V)Vout(V)NMLVM0.01.02.03.04.05.01.02.03.04.05.0EE141 Digital Integrated Circuits2ndIntroduction45VouttftpHLtpLHtrtVint90%10%50%50%EE141 Digital In
29、tegrated Circuits2ndIntroduction46v0v1v5v1v2v0v3v4v5T=2 tp NEE141 Digital Integrated Circuits2ndIntroduction47voutvinCRtp=ln(2)t=0.69 RCImportant model matches delay of inverter EE141 Digital Integrated Circuits2ndIntroduction48Instantaneous power:p(t)=v(t)i(t)=Vsupplyi(t)Peak power:Ppeak=Vsupplyipe
30、akAverage power:TttTttsupplysupplyavedttiTVdttpTP)(1EE141 Digital Integrated Circuits2ndIntroduction49Power-Delay Product(PDP)=E=Energy per operation=Pav tp Energy-Delay Product(EDP)=quality metric of gate =E tp EE141 Digital Integrated Circuits2ndIntroduction50VddVoutisupplyCLE0-1=CLVdd2PMOSNETWORK
31、NMOSA1ANNETWORKE01P t dt0TVddisupplyt dt0TVddCLdVout0VddCLVdd2=EcapPcapt dt0TVouticapt dt0TCLVoutdVout0Vdd12-CLVdd2=voutvinCLREE141 Digital Integrated Circuits2ndIntroduction51qDigital integrated circuits have come a long way and still have quite some potential left for the coming decadesqSome interesting challenges ahead Getting a clear perspective on the challenges and potential solutions is the purpose of this bookqUnderstanding the design metrics that govern digital design is crucial Cost,reliability,speed,power and energy dissipation