加乘原理.ppt

上传人(卖家):神总 文档编号:8086436 上传时间:2024-11-24 格式:PPT 页数:56 大小:1.04MB
下载 相关 举报
加乘原理.ppt_第1页
第1页 / 共56页
加乘原理.ppt_第2页
第2页 / 共56页
加乘原理.ppt_第3页
第3页 / 共56页
加乘原理.ppt_第4页
第4页 / 共56页
加乘原理.ppt_第5页
第5页 / 共56页
点击查看更多>>
资源描述

1、1 加法原理和乘法原理加法原理和乘法原理2 加法原理和乘法原理加法原理和乘法原理问题问题 1.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班,汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法,第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以 从甲地到乙地共有 4+2+3=9 种方法。3加法原理:加法原理:做一件事,完成它可以有 n 类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法。那么完成这件

2、事共有 N=m1+m2+mn 种不同的方法。4 加法原理和乘法原理加法原理和乘法原理 2.如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?A村B村C村北南中北南 分析:从A村经 B村去C村有2步,第一步,由A村去B村有3种方法,第二步,由B村去C村有3种方法,所以 从A村经 B村去C村共有 3 2=6 种不同的方法。5乘法原理:乘法原理:做一件事,完成它需要分成做一件事,完成它需要分成n个步骤,做第一个步骤,做第一步有步有m1种不同的方法,做第二步有种不同的方法,做第二步有m2种不同的方种不同的方法,法,做第,做第n步有步有mn种不同的方法。

3、那么完种不同的方法。那么完成这件事共有成这件事共有 N=m1 m2 mn 种不同的种不同的方法。方法。6加法原理:做一件事,完成它可以有 n 类办法,在第一类办法中有m1种不同的方法,在第一类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法。那麽完成这件事共有 N=m1+m2+mn 种不同的方法。乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法。那麽完成这件事共有 N=m1 m2 mn 种不同的方法。两个原理的共同点:不同点:都是把一个事件分解成若干个分事件来完成;前者分类,后者分步;如果分事件相互独立,分

4、类完备,就用加法原理;如果分事件相互关联,缺一不可,就用乘法原理。7 加法原理和乘法原理加法原理和乘法原理 例题例题 1.某班级有男三好学生5人,女三好学生4人。(1)从中任选一人去领奖,有多少种不同的选法?(2)从中任选男、女三好学生各一人去参加座谈会,有多少种不同的选法?分析:(1)完成从三好学生中任选一人去领奖这件事,共有2类办法,第一类办法,从男三好学生中任选一人,共有 m1=5 种不同的方法;第二类办法,从女三好学生中任选一人,共有 m2=4 种不同的方法;所以,根据加法原理,得到不同选法种数共有 N=5+4=9 种。8例例1 书架上层放有书架上层放有 6 本不同的数学书,下层放有本

5、不同的数学书,下层放有 5 本不同的语文书。本不同的语文书。从中任取一本,共有多少种不同的取法?从中任取一本,共有多少种不同的取法?从中任取数学书与语文书各一本,共有多少种不同的取法?从中任取数学书与语文书各一本,共有多少种不同的取法?解:从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从 6 本书中任取一本,有 6 种取法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5 种取法。根据加法原理,得到不同的取法的种数是:N=m1+m2=6+5=11 答:从书架上任取一本书,有11种不同的取法。91:一个盒子里装有:一个盒子里装有5个小球,另一个盒子里个小球,另一个盒子里

6、装有装有9个小球,所有这些小球颜色不相同个小球,所有这些小球颜色不相同。(1)从两个盒子里从两个盒子里任任取一个小球,有多少取一个小球,有多少种不同的取法?种不同的取法?(2)从两个盒子里从两个盒子里各各取一个球,有多少种取一个球,有多少种不同的取法?不同的取法?(1)5+9=14(种)(种)(2)5 9=45(种)(种)答:答:10解:从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法。根据乘法原理,得到不同的取法的种数是:N=m1 m2=65=30 答:从书架上取数学书与语文书各一本,共有30 种不同的取法。例例 书架上层

7、放有书架上层放有 6 本不同的数学书,下层放有本不同的数学书,下层放有 5 本不同的语文书。本不同的语文书。从中任取一本,共有多少种不同的取法?从中任取一本,共有多少种不同的取法?从中任取数学书与语文书各一本,共有多少种不同的取法?从中任取数学书与语文书各一本,共有多少种不同的取法?11 加法原理和乘法原理加法原理和乘法原理 例题例题 1.某班级有男三好学生5人,女三好学生4人。(1)从中任选一人去领奖,有多少种不同的选法?(2)从中任选男、女三好学生各一人去参加座谈会,有多少种不同的选法?分析:(2)完成从三好学生中任选男、女各一人去参加座谈会这件事,需分2步完成,第一步,选一名男三好学生,

8、有 m1=5 种方法;第二步,选一名女三好学生,有 m2=4 种方法;所以,根据乘法原理,得到不同选法种数共有 N=5 4=20 种。点评点评:解题的关键是从总体上看做这件事情是“分类完成”,还是“分步完成”。“分类完成”用“加法原理”;“分步完成”用“乘法原理”。12例例2 有不同的语文书有不同的语文书9本,不同的数学书本,不同的数学书7本,不同的物理本,不同的物理书书5本,从中任取两种不同类的书,共有多少种不同的取本,从中任取两种不同类的书,共有多少种不同的取法?法?解解:每次取出的两本书中:含 1 本语文书和 1 本数学书的共有 9 7=63 种取法;含 1 本数学书和 1 本物理书的共

9、有 7 5=35 种取法;含 1 本语文书和 1 本物理书的共有 9 5=45 种取法。由加法原理得 63 +35 +45 =143答:共有 143 种取法。131、小军、小兰、小红三个小朋友排成一、小军、小兰、小红三个小朋友排成一排照相,有多少种不同的排法?排照相,有多少种不同的排法?2、书架上各有、书架上各有5种不同的科技书,种不同的科技书,6 本不同的故事书、本不同的故事书、8本不同的英语书、本不同的英语书、如果从中各取如果从中各取1本科技书、本科技书、1本故事书和本故事书和1本英语书,那么共有多少种取法?本英语书,那么共有多少种取法?568=240(种)答:种)答:3 21=6(种)种

10、)答:答:14例4:四个数字四个数字3、5、6、8可以组成可以组成多少个没有重复数字的四位数?多少个没有重复数字的四位数?4 3 2 1=24(个)(个)答:答:15例例:南京与上海的动车特快车,:南京与上海的动车特快车,中途只停靠常州、无锡、苏州三个中途只停靠常州、无锡、苏州三个火车站,共准备多少种不同的车票?火车站,共准备多少种不同的车票?4+3+2+1=10(种)(种)10 2=20(种)(种)答:答:16练习书架的上层放有 5 本不同的数学书,中层放有6本不同的语文书,下层放有4本不同的英语书,从中任取1 本书的不同取法的种数是()A.5+64=15 B.1 C.654 =120 D.

11、3A在上题中,如果从中任取3本,数学,语文,英语各一本,则不同取法的种数是()A.1+1+1=3 B.5+6+4=15 C.564 =120 D.1C把四封信任意投入三个信箱中,不同投法种数是()A.12 B.64 C.81 D.7C4 火车上有10名乘客,沿途有5个车站,乘客下车的可能方式有 ()种 A.510 B.105 C.50 D.以上都不对A17 加法原理和乘法原理加法原理和乘法原理1.一个三位密码锁,各位上数字由0,1,2,3,4,5,6,7,8,9十个数字组成,可以设置多少种三位数的密码(各位上的数字允许重复)?首位数字不为0的密码数是多少?首位数字是0的密码数又是多少?分析:按

12、密码位数,从左到右依次设置第一位、第二位、第三位,需分为三步完成;第一步,m1=10;第二步,m2=10;第三步,m2=10.根据乘法原理,共可以设置 N=101010=103 种三位数的密码。答:首位数字不为0的密码数是 N=91010=9102 种,首位数字是0的密码数是 N=11010=102 种。由此可以看出,首位数字不为0的密码数与首位数字是0的密码数之和等于密码总数。18 加法原理和乘法原理加法原理和乘法原理2.一个三位密码锁,各位上数字由0,1,2,3,4,5,6,7,8,9十个数字组成,可以设置多少种三位数的密码(各位上的数字允许重复)?首位数字不为0的密码数是多少?首位数字是

13、0的密码数又是多少?问:若设置四位、五位、六位、十位等密码,密码数分别有多少种?答:它们的密码种数依次是 104,105,106,种。19练习 1.由数字1,2,3,4,5可以组成多少个三位数(各位上的数字不允许重复)?2.由数字0、1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?3.由数字0,1,2,3,4,5可以组成多少个十位数字大于个位数字的两位数?4.一个三位密码锁,各位上数字由0,1,2,3,4,5,6,7,8,9十个数字组成,可以设置多少种三位数的密码(各位上的数字允许重复)?首位数字不为0的密码数是多少种?首位数字是0的密码数又是多少种?6018015100090

14、010020 加法原理和乘法原理加法原理和乘法原理3.在所有的两位数中,个位数字大于十位数字的两位数共有多少个?分析1:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是 1个,2个,3个,4个,5个,6个,7 个,8 个.则根据加法原理共有 1+2+3+4+5+6+7+8=36(个).分析2:按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别是 8个,7个,6个,5个,4个,3个,2个,1个.则根据加法原理共有 8+7+6+5+4+3+2+1=36(个)21 9.1 加法原理和乘法原理加法原理和乘法原理 点评点评:加法原理中的

15、“分类”要全面,不能遗漏;但也不能重复、交叉;“类”与“类之间是并列的、互斥的、独立的,也就是说,完成一件事情,每次只能选择其中的一类办法中的某一种方法。乘法原理中的“分步”程序要正确。“步”与“步”之间是连续的,不间断的,缺一不可;但也不能重复、交叉;若完成某件事情需n步,则必须且只需依次完成这n个步骤后,这件事情才算完成。在运用“加法原理、乘法原理”处理具体应用题时,除要弄清是“分类”还是“分步”外,还要搞清楚“分类”或“分步”的具体标准。在“分类”或“分步”过程中,标准必须一致标准必须一致,才能保证不重复、不遗漏。22 加法原理和乘法原理加法原理和乘法原理 课堂练习课堂练习 1.如图,要

16、给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?232425262728293031 加法原理和乘法原理加法原理和乘法原理 课堂练习课堂练习 1.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解:按地图A、B、C、D四个区域依次分四步完成,第一步,m1=3 种,第二步,m2=2 种,第三步,m3=1 种,第四步,m4=1 种,所以根据乘法原理,得到不同的涂色方案种数共有 N=3 2 11=6 种。32 加法原理

17、和乘法原理加法原理和乘法原理 课堂练习课堂练习 1.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?问:若用2色、3色、4色、5色等,结果又怎样呢?答:它们的涂色方案种数分别是 0,4322=48,5433=180种等。33 2.如图,该电路,从A到B共有多少条不同的线路可通电?AB343536373839404142434445464748495051529.1 加法原理和乘法原理加法原理和乘法原理解:从总体上看由A到B的通电线路可分三类,第一类,m1=3 条 第二类,m2=1 条 第三类,m3=

18、22=4,条 所以,根据加法原理,从A到B共有 N=3+1+4=8 条不同的线路可通电。53.ABABm1m1m2m2mnmn点评点评:我们可以把加法原理看成“并联电路”;乘法原理看成“串联电路”。如图:54 加法原理和乘法原理加法原理和乘法原理 4.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?甲地乙地丙地丁地 解:从总体上看,由甲到丙有两类不同的走法,第一类,由甲经乙去丙,又需分两步,所以 m1=23=6 种不同的走法;第二类,由甲经丁去丙,也需分两步,所以 m2=42=8 种不同的走法;所以

19、从甲地到丙地共有 N=6+8=14 种不同的走法。55 加法原理和乘法原理加法原理和乘法原理 请同学们回答下面的问题请同学们回答下面的问题:1.本节课学习了那些主要内容?答答:加法原理和乘法原理。2.加法原理和乘法原理的共同点是什么?不同点什么?答答:共同点是,它们都是研究完成一件事情,共有多少种不同的方法。不同点是,它们研究完成一件事情的方式不同,加法原理是“分类完成”,即任何一类办法中的任何一个方法都能完成这件事。乘法原理是“分步完成”,即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情。这也是本节课的重点。56加法原理和乘法原理加法原理和乘法原理 请同学们回答下面的问题请同学们回答下面的问题:3.何时用加法原理、乘法原理里呢?答答:完成一件事情有n类方法,若每一类方法中的任何一种方法均能将这件事情从头至尾完成,则计算完成这件事情的方法总数用加法原理。完成一件事情有n个步骤,若每一步的任何一种方法只能完成这件事的一部分,并且必须且只需完成互相独立的这n步后,才能完成这件事,则计算完成这件事的方法总数用乘法原理。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 常用办公文档
版权提示 | 免责声明

1,本文(加乘原理.ppt)为本站会员(神总)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|