河北省永年县第二中学2023-2024学年高考数学考前最后一卷预测卷含解析.doc

上传人(卖家):知识图书馆 文档编号:8103705 上传时间:2024-11-29 格式:DOC 页数:22 大小:2.42MB
下载 相关 举报
河北省永年县第二中学2023-2024学年高考数学考前最后一卷预测卷含解析.doc_第1页
第1页 / 共22页
河北省永年县第二中学2023-2024学年高考数学考前最后一卷预测卷含解析.doc_第2页
第2页 / 共22页
河北省永年县第二中学2023-2024学年高考数学考前最后一卷预测卷含解析.doc_第3页
第3页 / 共22页
河北省永年县第二中学2023-2024学年高考数学考前最后一卷预测卷含解析.doc_第4页
第4页 / 共22页
河北省永年县第二中学2023-2024学年高考数学考前最后一卷预测卷含解析.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、2024年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是( )ABCD2已知函数,且),则

2、“在上是单调函数”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件3设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD4使得的展开式中含有常数项的最小的n为( )ABCD5设正项等比数列的前n项和为,若,则公比( )AB4CD26已知为非零向量,“”为“”的( )A充分不必要条件B充分必要条件C必要不充分条件D既不充分也不必要条件7一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( )ABCD8赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称

3、“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD9已知函数有两个不同的极值点,若不等式有解,则的取值范围是( )ABCD10已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为( )A1.5B2.5C3.5D4.511水平放置的,用斜二测画法作出的直观图是如图所示的,其中 ,则绕AB所在直线旋转一周后形成的几何体的表面积为(

4、)ABCD12设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在250,400)内的学生共有_人14若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为_.15在平面直角坐标系中,双曲线的一条准线与两条渐近线所围

5、成的三角形的面积为_.16已知函数f(x)若关于x的方程f(x)kx有两个不同的实根,则实数k的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:18(12分)在三棱锥中,为棱的中点,(I)证明:;(II)求直线与平面所成角的正弦值.19(12分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.20(12分)已知六面体如图所示,平面,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.21(12分)设抛

6、物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.(1)求的值及该圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.22(10分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为直径的圆上,且,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可【详解】由题意,双曲线的一条渐近线方程为,即,是直线上任

7、意一点,则直线与直线的距离,圆与双曲线的右支没有公共点,则,即,又故的取值范围为,故选:B【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题2、C【解析】先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且) 令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.3、D【解析】利用向量运

8、算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.4、B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用5、D【解析】由得,又,两式相除即可解出【详解】解:由得,又,或,又正项等比数列得,故选:D【点睛】本题主要考查等比数列的性质的应用,属于基础题6、B【解析】由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,

9、由等价法即可判断两命题的关系.【详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.7、A【解析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,四面体所有棱长都是4,正方体的棱长为,设球的半径为,则,解得,所以,故选:A【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的

10、对角线,从而将问题巧妙转化,属于中档题8、D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题9、C【解析】先求导得(),由于函数有两个不同的极值点,转化为方程有两个不相等的正实数根,根据,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最

11、值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.10、D【解析】利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.11、B【解析】根据斜二测画

12、法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.12、A【解析】设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,其中, ,即 关于轴对称 故选:【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表

13、示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.二、填空题:本题共4小题,每小题5分,共20分。13、750【解析】因为,得,所以。14、【解析】二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值.【详解】解:如图,设二面角平面角为,点Q到底面的距离为,点Q到定直线的距离为d,则,即.点Q到底面的距离与到点P的距离之比为正常数k,则,动点Q的轨迹是抛物线,即则.二面角的平面角的余弦值为解得:().故答案为:.【点睛】本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题.15

14、、【解析】求出双曲线的渐近线方程,求出准线方程,求出三角形的顶点的坐标,然后求解面积【详解】解:双曲线:双曲线中,则双曲线的一条准线方程为,双曲线的渐近线方程为:,可得准线方程与双曲线的两条渐近线所围成的三角形的顶点的坐标,则三角形的面积为故答案为:【点睛】本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力,属于中档题16、【解析】由图可知,当直线ykx在直线OA与x轴(不含它们)之间时,ykx与yf(x)的图像有两个不同交点,即方程有两个不相同的实根三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)递减区间为(-1,0),递增区间为(2)见解析【解析】(1

15、)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.【详解】(1)函数可求得,则解得所以,定义域为,在单调递增,而,当时,单调递减,当时,单调递增,此时是函数的极小值点,的递减区间为,递增区间为(2)证明:当时,因此要证当时,只需证明,即令,则,在是单调递增,而,存在唯一的,使得,当,单调递减,当,单调递增,因此当时,函数取得最小值,故,从

16、而,即,结论成立.【点睛】本题考查了由函数极值求参数,并根据导数判断函数的单调区间,利用导数证明不等式恒成立,构造函数法的综合应用,属于难题.18、 (I)证明见解析;(II)【解析】(I) 过作于,连接,根据勾股定理得到,得到平面,得到证明.(II) 过点作于,证明平面,故为直线与平面所成角,计算夹角得到答案.【详解】(I)过作于,连接,根据角度的垂直关系易知:,故,.根据余弦定理:,解得,故,故,故平面,平面,故.(II)过点作于,平面,平面,故,故平面,故为直线与平面所成角,根据余弦定理:,故.【点睛】本题考查了线线垂直,线面夹角,意在考查学生的计算能力和空间想象能力.19、(1)(2)

17、【解析】(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,再求得的面积.【详解】(1)因为直线过点,且斜率.所以直线的方程为,即,所以圆心到直线的距离为, 又因为,圆的半径为,所以,即,解之得,或(舍去).所以,所以所示椭圆的方程为 .(2)由(1)得,椭圆的右准线方程为,离心率,则点到右准线的距离为,所以,即,把代入椭圆方程得,因为直线的斜率,所以, 因为直线经过和,所以直线的方程为,联立方程组得,解得或,所以, 所以的面积.【点睛】本题主要考查直线和圆、椭圆的位置关系,考查椭圆的方程的求法,考查三角形面积的计算,意在考查学生对这

18、些知识的掌握水平和分析推理计算能力.20、(1)证明见解析(2)【解析】(1)连接,设,连接.通过证明,证得直线平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的正弦值.【详解】(1)连接,设,连接,因为,所以,所以,在中,因为,所以,且平面,故平面.(2)因为,所以,因为,平面,所以平面,所以,取所在直线为轴,取所在直线为轴,取所在直线为轴,建立如图所示的空间直角坐标系,由已知可得,所以,因为,所以,所以点的坐标为,所以,设为平面的法向量,则,令,解得,所以,即为平面的一个法向量.,同理可求得平面的一个法向量为所以所以二面角的正弦值为【点睛】本小题主要考查线面平行的证明,

19、考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(1),圆的方程为:.(2)答案见解析【解析】(1)根据题意,可知点的坐标为,即可求出的值,即可求出该圆的方程;(2)由题易知,直线的斜率存在且不为0,设的方程为,与抛物线联立方程组,根据,求得,化简解得,进而求得点的坐标为,分别求出,利用向量的数量积为0,即可证出.【详解】解:(1)易知点的坐标为,所以,解得.又圆的圆心为,所以圆的方程为.(2)证明易知,直线的斜率存在且不为0,设的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点的坐标为.所以,.故.【点睛】本题考查抛物线的标准方程和圆的方程,考查直线和抛物线的位置关系,利用联立方程组、求交点坐标以及向量的数量积,考查解题能力和计算能力.22、(1);(2).【解析】(1)由椭圆的离心率求出、的值,由此可求得椭圆的方程;(2)设点、,联立直线与椭圆的方程,列出韦达定理,由题意得出,可得出,【详解】(1)由题意得,.又因为,所以椭圆的方程为;(2)由,得.设、,所以,依题意,易知,四边形为平行四边形,所以.因为,所以.即,将其整理为.因为,所以,.所以,即.【点睛】本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,考查计算能力,属于中等题.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 数学 > 高考专区 > 模拟试题
版权提示 | 免责声明

1,本文(河北省永年县第二中学2023-2024学年高考数学考前最后一卷预测卷含解析.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|