河南省豫南市级示范性高中2024届高考临考冲刺数学试卷含解析.doc

上传人(卖家):知识图书馆 文档编号:8116905 上传时间:2024-12-03 格式:DOC 页数:21 大小:2.11MB
下载 相关 举报
河南省豫南市级示范性高中2024届高考临考冲刺数学试卷含解析.doc_第1页
第1页 / 共21页
河南省豫南市级示范性高中2024届高考临考冲刺数学试卷含解析.doc_第2页
第2页 / 共21页
河南省豫南市级示范性高中2024届高考临考冲刺数学试卷含解析.doc_第3页
第3页 / 共21页
河南省豫南市级示范性高中2024届高考临考冲刺数学试卷含解析.doc_第4页
第4页 / 共21页
河南省豫南市级示范性高中2024届高考临考冲刺数学试卷含解析.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、河南省豫南市级示范性高中2024届高考临考冲刺数学试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后

2、,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数有三个不同的零点 (其中),则 的值为( )ABCD2一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )ABCD3已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)4已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为( )AB4C2D5设Py |yx21,xR,Qy |y2x,xR,则AP QBQ

3、 PCQDQ 6已知等差数列中,则( )A20B18C16D147记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )A2阶区间B3阶区间C4阶区间D5阶区间8设是等差数列的前n项和,且,则( )ABC1D29已知集合,则等于( )ABCD10已知变量的几组取值如下表:12347若与线性相关,且,则实数( )ABCD11若向量,则( )A30B31C32D3312等比数列的各项均为正数,且,则( )A12B10C8D二、填空题:本题共4小题,每小题5分,共20分。13已知,分别是椭圆:()的左、右焦点,过左焦点的直线与椭圆交于、两点,且,,则椭圆的离心率为_14已知函

4、数在上仅有2个零点,设,则在区间上的取值范围为_15已知函数,若函数有个不同的零点,则的取值范围是_16已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若NRF=60,则|FR|等于_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列是各项均为正数的等比数列,且,成等差数列()求数列的通项公式;()设,为数列的前项和,记,证明:18(12分)已知函数,其中.()若,求函数的单调区间;()设.若在上恒成立,求实数的最大值.19(12分)已知曲线的参数方程为为参数, 曲线的参数方程

5、为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.20(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:现随机抽取了100为会员统计它们的消费次数,得到数据如下:假设该项目的成本为每次30元,根据给出的数据回答下列问题:(1)估计1位会员至少消费两次的概率(2)某会员消费4次,求这4次消费获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望21(12分)如图所示,在四棱锥中,平面,底面ABCD满足ADBC,E为AD

6、的中点,AC与BE的交点为O.(1)设H是线段BE上的动点,证明:三棱锥的体积是定值;(2)求四棱锥的体积;(3)求直线BC与平面PBD所成角的余弦值22(10分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学

7、期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】令,构造,要使函数有三个不同的零点(其中),则方程需要有两个不同的根,则,解得或,结合的图象,并分,两个情况分类讨论,可求出的值.【详解】令,构造,求导得,当时,;当时,故在上单调递增,在上单调递减,且时,时,可画出函数的图象(见下图),要使函数有三个不同的零点(其中),则方程需要有两个不同的根(其中),则,解得或,且,若,即,则,则,且,故,若,即,由于,故,故不符合题意,舍去. 故选A. 【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.2、D【解

8、析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.3、D【解析】原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a2,令t,则f(x)a记g(t)当t2时,g(t)2ln(t)(t)单调递减,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有两个不等于2的不等根则,记h(t)(t2且t2),则h(t)令(t),则(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在

9、(2,+)上小于2,则h(t)在(2,2)上单调递增,在(2,+)上单调递减由,可得,即a2实数a的取值范围是(2,2)故选:D【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.4、A【解析】由已知得,由已知比值得,再利用双曲线的定义可用表示出,用勾股定理得出的等式,从而得离心率【详解】.又,可令,则.设,得,即,解得,,由得,该双曲线的离心率.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系5、C【解析】解:因为P =y|

10、y=-x2+1,xR=y|y1,Q =y| y=2x,xR =y|y0,因此选C6、A【解析】设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【详解】设等差数列的公差为.由得,解得.所以.故选:A【点睛】本题主要考查了等差数列的基本量求解,属于基础题.7、D【解析】可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间. 故选:D【点睛】

11、本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题8、C【解析】利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,.故选:C【点睛】本小题主要考查等差数列的性质,属于基础题.9、A【解析】进行交集的运算即可【详解】,1,2,1,故选:【点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题10、B【解析】求出,把坐标代入方程可求得【详解】据题意,得,所以,所以故选:B【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值11、C【解析】先求出,再与相乘

12、即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.12、B【解析】由等比数列的性质求得,再由对数运算法则可得结论【详解】数列是等比数列,故选:B.【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,则,由知, ,作,垂足为C,则C为的中点,在和中分别求出,进而求出的关系式,即可求出椭圆的离心率.【详解】如图,设,则,由椭圆定义知,因为,所以,作,垂足为C,则C为的中点,在中,因为,所以,在中,由余弦定理可得,,即,解得,所以椭圆的离心率

13、为.故答案为:【点睛】本题考查椭圆的离心率和直线与椭圆的位置关系;利用椭圆的定义,结合焦点三角形和余弦定理是求解本题的关键;属于中档题、常考题型.14、【解析】先根据零点个数求解出的值,然后得到的解析式,采用换元法求解在上的值域即可.【详解】因为在上有两个零点,所以,所以,所以且,所以,所以,所以,令,所以,所以,因为,所以,所以,所以,所以 ,所以.故答案为:.【点睛】本题考查三角函数图象与性质的综合,其中涉及到换元法求解三角函数值域的问题,难度较难. 对形如的函数的值域求解,关键是采用换元法令,然后根据,将问题转化为关于的函数的值域,同时要注意新元的范围.15、【解析】作出函数的图象及直线

14、,如下图所示,因为函数有个不同的零点,所以由图象可知,所以16、2【解析】由题意知:,.由NRF=60,可得为等边三角形,MFPQ,可得F为HR的中点,即求.【详解】不妨设点P在第一象限,如图所示,连接MF,QF.抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,.M,N分别为PQ,PF的中点,PQ垂直l于点Q,PQ/OR,NRF=60,为等边三角形,MFPQ,易知四边形和四边形都是平行四边形,F为HR的中点,故答案为:2.【点睛】本题主要考查抛物线的定义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(),;()见解析【解析】()由,且成等差数列,可求

15、得q,从而可得本题答案;()化简求得,然后求得,再用裂项相消法求,即可得到本题答案.【详解】()因为数列是各项均为正数的等比数列,可设公比为q,又成等差数列,所以,即,解得或(舍去),则,;()证明:,则,因为,所以即.【点睛】本题主要考查等差等比数列的综合应用,以及用裂项相消法求和并证明不等式,考查学生的运算求解能力和推理证明能力.18、()单调递减区间为,单调递增区间为;().【解析】()求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;()由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数

16、证明出在上恒成立,由此得出,进而可得出实数的最大值.【详解】()函数的定义域为.当时,. 令,解得(舍去),.当时,所以,函数在上单调递减;当时,所以,函数在上单调递增.因此,函数的单调递减区间为,单调递增区间为;()由题意,可知在上恒成立.(i)若,构造函数,则,.又,在上恒成立.所以,函数在上单调递增,当时,在上恒成立.(ii)若,构造函数,.,所以,函数在上单调递增.恒成立,即,即.由题意,知在上恒成立.在上恒成立.由()可知,又,当,即时,函数在上单调递减,不合题意,即.此时构造函数,.,恒成立,所以,函数在上单调递增,恒成立.综上,实数的最大值为【点睛】本题考查利用导数求解函数的单调

17、区间,同时也考查了利用导数研究函数不等式恒成立问题,本题的难点在于不断构造新函数来求解,考查推理能力与运算求解能力,属于难题.19、(1),(2)0【解析】(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入的普通方程,化为关于的一元二次方程,再由根与系数的关系及此时的几何意义求解【详解】(1)由曲线的参数方程为为参数),消去参数,可得;由曲线的参数方程为为参数),消去参数,可得,即(2)把为参数)代入,得,解得:,即,满足【点睛】本题考查参数方程化普通方程,特别是直线参数方程中参数的几何意义的应用,是中档题20、(1)(2)22.5(3)见解析,【解析】(1)

18、根据频数计算频率,得出概率;(2)根据优惠标准计算平均利润;(3)求出各种情况对应的的值和概率,得出分布列,从而计算出数学期望【详解】解:(1)估计1位会员至少消费两次的概率;(2)第1次消费利润;第2次消费利润;第3次消费利润;第4次消费利润;这4次消费获得的平均利润:(3)1次消费利润是27,概率是;2次消费利润是,概率是;3次消费利润是,概率是;4次消费利润是,概率是;由题意:故分布列为: 0 期望为: 【点睛】本题考查概率、平均利润、离散型随机变量的分布列和数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中档题21、(1)证明见解析 (2) (3

19、)【解析】(1)因为底面ABCD为梯形,且,所以四边形BCDE为平行四边形,则BECD,又平面,平面,所以平面, 又因为H为线段BE上的动点,的面积是定值,从而三棱锥的体积是定值. (2)因为平面,所以,结合BECD,所以,又因为,且E为AD的中点,所以四边形ABCE为正方形,所以,结合,则平面,连接,则, 因为平面,所以,因为,所以是等腰直角三角形,O为斜边AC上的中点,所以,且,所以平面,所以PO是四棱锥的高,又因为梯形ABCD的面积为,在中,所以.(3)以O为坐标原点,建立空间直角坐标系,如图所示,则B(,0,0),C(0,0),D(,0),P(0,0,),则,设平面PBD的法向量为,则即则,令,得到, 设BC与平面PBD所成的角为,则,所以,所以直线BC与平面PBD所成角的余弦值为22、(1) (2)9060元【解析】(1)根据古典概型概率公式和组合数的计算可得所求概率;(2) 任选一天,设该天的经济损失为元,分别求出,进而求得数学期望,据此得出该企业一个月经济损失的数学期望.【详解】解:(1)设为选取的3天中空气质量为优的天数,则.(2)任选一天,设该天的经济损失为元,则的可能取值为0,220,1480,所以(元),故该企业一个月的经济损失的数学期望为(元).【点睛】本题考查古典概型概率公式和组合数的计算及数学期望,属于基础题.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 模拟试题
版权提示 | 免责声明

1,本文(河南省豫南市级示范性高中2024届高考临考冲刺数学试卷含解析.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|