2023-2024学年江苏省泗阳县实验初级中学高考数学考前最后一卷预测卷含解析.doc

上传人(卖家):知识图书馆 文档编号:8116913 上传时间:2024-12-03 格式:DOC 页数:18 大小:1.52MB
下载 相关 举报
2023-2024学年江苏省泗阳县实验初级中学高考数学考前最后一卷预测卷含解析.doc_第1页
第1页 / 共18页
2023-2024学年江苏省泗阳县实验初级中学高考数学考前最后一卷预测卷含解析.doc_第2页
第2页 / 共18页
2023-2024学年江苏省泗阳县实验初级中学高考数学考前最后一卷预测卷含解析.doc_第3页
第3页 / 共18页
2023-2024学年江苏省泗阳县实验初级中学高考数学考前最后一卷预测卷含解析.doc_第4页
第4页 / 共18页
2023-2024学年江苏省泗阳县实验初级中学高考数学考前最后一卷预测卷含解析.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、2023-2024学年江苏省泗阳县实验初级中学高考数学考前最后一卷预测卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的部分图象如图所示,将此图象分别作以下变换,那么

2、变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方向平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.ABCD2已知点在双曲线上,则该双曲线的离心率为( )ABCD3已知复数,(为虚数单位),若为纯虚数,则()AB2CD4中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B从2014年到2018年这5年,高铁运营里程与

3、年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列5函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A函数的最小正周期是B函数的图象关于点成中心对称C函数在单调递增D函数的图象向右平移后关于原点成中心对称6设为等差数列的前项和,若,则ABCD7正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )ABCD8若复数,其中是虚数单位,则的最大值为( )ABCD9已知复数满足,则的最大值为( )ABCD610 若数列满足且,则使的的值为( )ABCD11已知椭

4、圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )ABCD12如图,在矩形中的曲线分别是,的一部分,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()ABCD大小关系不能确定二、填空题:本题共4小题,每小题5分,共20分。13函数的最小正周期为_;若函数在区间上单调递增,则的最大值为_.14若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为_15我国古代数学著作九章算术中记载“今有人共买物,人出八,盈三;人出七,不足四问人数、物价各几何?”设人数、物价分别为、,满足,则_,_16若函数

5、恒成立,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.18(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有19(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了

6、了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.20(12分)已知点到抛物线C:y1=1px准线的距离为1()求C的方程及焦点F的坐标;()设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值21(12分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.22(10分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.参考答案一、选择题:本题共12小题,每

7、小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重合,故正确;,故,函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.2、C【解析】将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.3、C【解析】把代入,利用复数代

8、数形式的除法运算化简,由实部为0且虚部不为0求解即可【详解】,为纯虚数,解得故选C【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题4、D【解析】由折线图逐项分析即可求解【详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题5、B【解析】根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期, 不妨令,由周期,所以,又,所以,所以,令,解得,当时,即函数的一个对称中心为,即函

9、数的图象关于点成中心对称故选B【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题6、C【解析】根据等差数列的性质可得,即,所以,故选C7、C【解析】分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,则,由,即,得.所以=,所以当时,的最小值为.故选:C.【点睛】本题考查向量的数量积的坐标表示,属于基础题.8、C【解析】由复数的几何

10、意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.9、B【解析】设,利用复数几何意义计算.【详解】设,由已知,所以点在单位圆上,而,表示点到的距离,故.故选:B.【点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.10、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C11、D【解析】可设的内切圆的圆心为,设,可得,由切线的性质:切线长相等推得,解得、,并设,求

11、得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值【详解】可设的内切圆的圆心为,为切点,且为中点,设,则,且有,解得,设,设圆切于点,则,由,解得,所以为等边三角形,所以,解得.因此,该椭圆的离心率为.故选:D.【点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题12、B【解析】先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为又,故故选B【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题二、填空题:本题共4小题

12、,每小题5分,共20分。13、 【解析】直接计算得到答案,根据题意得到,解得答案.【详解】,故,当时,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.14、【解析】依题意得,再求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解: 正三棱柱的所有棱长均为2,则,点到平面的距离为点到直线的距离所以,所以.故答案为: 【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.15、 【解析】利用已知条件,通过求解方程组即可得到结果【详解】设人数、物价分别为、,满足,解得,.故答案为:;.【点睛】本题考查函数与方程的应用,方程组

13、的求解,考查计算能力,属于基础题16、【解析】若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得。【详解】由题意得,只要即可,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,若恒成立,则,解得;当时,恒成立;当时,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【点睛】本题考查恒成立条件下,求参数的取值范围,是常考题型。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式,求得的取值范围

14、,根据分段函数解析式,求得的取值范围,结合题意列不等式,解不等式求得的取值范围.【详解】(1),由得或或;解得.故所求解集为.(2),即.由(1)知,所以,即.,.【点睛】本小题考查了绝对值不等式,绝对值三角不等式和函数最值问题,考查运算求解能力,推理论证能力,化归与转化思想.18、(1)答案见解析(2)答案见解析【解析】(1)利用复合函数求导求出,利用导数与函数单调性之间的关系即可求解. (2)首先证,令,求导可得单调递增,由即可证出;再令,再利用导数可得单调递增,由即可证出.【详解】(1)显然时,故在单调递减(2)首先证,令,则单调递增,且,所以再令,所以单调递增,即,【点睛】本题考查了利

15、用导数研究函数的单调性、利用导数证明不等式,解题的关键掌握复合函数求导,属于难题.19、(1)元;(2)32家;(3)分布列见解析;【解析】(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,.,所以的分布列为数学期望【点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和

16、期望,属于基础题.20、 ()C的方程为,焦点F的坐标为(1,0);()1【解析】()根据抛物线定义求出p,即可求C的方程及焦点F的坐标;()设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)1(k0),与抛物线联立可得ky1-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|NF|的值【详解】()由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0.设直线AB的方程为y=k(x+1)1(

17、k0).由得,则,.因为点A,B在抛物线C上,所以,.因为PFx轴,所以,所以|MF|NF|的值为1.【点睛】本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.21、(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:() 平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面()如图,以点为原点, 分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量设为面的法向量,则,即,取,则依题意,则于是设直线与平面所成角为,则即直线与平面所成角的正弦值为22、(1).(2)答案见解析【解析】(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,的最小值;(2)证明:依题意,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 模拟试题
版权提示 | 免责声明

1,本文(2023-2024学年江苏省泗阳县实验初级中学高考数学考前最后一卷预测卷含解析.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|