1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为( )ABCD2已知,则( )ABCD3 “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹
2、纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )ABC10D4如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()ABCD5已知函数,其中为自然对数的底数,若存在实数,使成立,则实数的值为( )ABCD6执行下面的程序框图,如果输入,则计算机输出的数是( )ABCD7若集合,则( )ABCD8某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师
3、指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.A360B240C150D1209()ABCD10设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则( )ABCD11下列说法正确的是( )A命题“,”的否定形式是“,”B若平面,满足,则C随机变量服从正态分布(),若,则D设是实数,“”是“”的充分不必要条件12点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为( ) ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数的最小正周期为_;若函数在区间上单调递增,则的最大值为_.14已知,满足,则的展开
4、式中的系数为_.15已知,那么_.16已知双曲线(a0,b0)的一条渐近线方程为,则该双曲线的离心率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,若存在实数使成立,求实数的取值范围.18(12分)如图所示,在四面体中,平面平面,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.19(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为()求直线的普通方程及曲线的直角坐标方程;()设点,直线与曲线相交于,求的值20(12分)随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报
5、名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:考试情况男学员女学员第1次考科目二人数1200800第1次通过科目二人数960600第1次未通过科目二人数240200若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员
6、每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.21(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,求直线的斜率.22(10分)已知与有两个不同的交点,其横坐标分别为().(1)求实数
7、的取值范围;(2)求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.2、D【解析】令,求,利用导数判断函数
8、为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,故单调递增:,当,设, ,又,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.3、D【解析】直接根据几何概型公式计算得到答案.【详解】根据几何概型:,故.故选:.【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.4、A【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,平面,平面,且与正方体的其余四个面所在平面均相
9、交,结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.5、A【解析】令f(x)g(x)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是减函数,(1,+)上是增函数,故当x=1时,y有最小值10=1,而exa+4eax4,(当且仅当exa=4eax,即x=a+ln1时,等号成立);故f(x)g(x)3(当且仅当等号同时成立时,等号成立);故x=a+ln1=1,即a=1ln1故选:A6、B【解析】先明确该程序框图的功能是计算两个数的最大公约数,再利
10、用辗转相除法计算即可.【详解】本程序框图的功能是计算,中的最大公约数,所以,故当输入,则计算机输出的数是57.故选:B.【点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.7、A【解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可【详解】解:由集合,解得,则故选:【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键属于基础题8、C【解析】可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可【详解】分成两类,一类是3个新教师与同
11、一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有共有结对方式6090150种故选:C【点睛】本题考查排列组合的综合应用解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数本题中有一个平均分组问题计数时容易出错两组中每组中人数都是2,因此方法数为9、B【解析】利用复数代数形式的乘除运算化简得答案【详解】故选B【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题10、C【解析】画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【详解】作图,设与的夹角
12、为,则中边上的高与中边上的高之比为,设,则直线,即,与联立,解得,从而得到面积比为.故选:【点睛】解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.11、D【解析】由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是
13、一道容易题.12、D【解析】由题意得,再利用基本不等式即可求解【详解】将平方得,(当且仅当时等号成立),的最小值为,故选:D【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】直接计算得到答案,根据题意得到,解得答案.【详解】,故,当时,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.14、1【解析】根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数【详解】由题意,的展开式中的系数为故答案为:1【点睛】本题考查二项式定理,掌
14、握二项式定理的应用是解题关键15、【解析】由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.【详解】,.故答案为:.【点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.16、【解析】根据题意,由双曲线的渐近线方程可得,即a2b,进而由双曲线的几何性质可得cb,由双曲线的离心率公式计算可得答案【详解】根据题意,双曲线的渐近线方程为yx,又由该双曲线的一条渐近线方程为x2y0,即yx,则有,即a2b,则cb,则该双曲线的离心率e;故答案为:【点睛】本题考查双曲线的几何性质,关键是分析a、b之间的关系,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步
15、骤。17、【解析】试题分析:先将问题“ 存在实数使成立”转化为“求函数的最大值”,再借助柯西不等式求出的最大值即可获解.试题解析:存在实数使成立,等价于的最大值大于,因为,由柯西不等式:,所以,当且仅当时取“”,故常数的取值范围是考点:柯西不等式即运用和转化与化归的数学思想的运用.18、(1)见证明;(2)【解析】(1)根据面面垂直的性质得到平面,从而得到,利用勾股定理得到,利用线面垂直的判定定理证得平面;(2)设,利用椎体的体积公式求得 ,利用导数研究函数的单调性,从而求得时,四面体的体积取得最大值,之后利用空间向量求得二面角的余弦值.【详解】(1)证明:因为,平面平面,平面平面,平面,所以
16、平面,因为平面,所以.因为,所以,所以,因为,所以平面.(2)解:设,则,四面体的体积 . ,当时,单调递增;当时,单调递减.故当时,四面体的体积取得最大值.以为坐标原点,建立空间直角坐标系,则,.设平面的法向量为,则,即,令,得,同理可得平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的性质,线面垂直的判定,椎体的体积,二面角的求法,在解题的过程中,注意巧用导数求解体积的最大值.19、(),;().【解析】()由(为参数)直接消去参数,可得直线的普通方程,把两边同时乘以,结合,可得曲线的直角坐标方程;()把代
17、入,化为关于的一元二次方程,利用根与系数的关系及参数的几何意义求解【详解】解:( )由(为参数),消去参数,可得,即曲线的直角坐标方程为;( )把代入,得设,两点对应的参数分别为,则,不妨设,【点睛】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,明确直线参数方程中参数的几何意义是解题的关键,是中档题20、(1);(2)见解析.【解析】事件表示男学员在第次考科目二通过,事件表示女学员在第次考科目二通过(其中)(1)这对夫妻是否通过科目二考试相互独立,利用独立事件乘法公式即可求得;(2)补考费用之和为元可能取值为400,600,800,1000,1200,根据题意可求相应的概率,进而可求X
18、的数学期望【详解】事件表示男学员在第次考科目二通过,事件表示女学员在第次考科目二通过(其中).(1)事件表示这对夫妻考科目二都不需要交补考费.(2)的可能取值为400,600,800,1000,1200., , , ,.则的分布列为: 40060080010001200 故 (元).【点睛】本题以实际问题为素材,考查离散型随机变量的概率及期望,解题时要注意独立事件概率公式的灵活运用,属于基础题.21、(1)(2)0【解析】(1)根据题意,设直线,与联立,得,再由弦长公式,求解.(2)设,根据直线的斜率为1,则,得到,再由,所以线段中点的纵坐标为,然后直线的方程与直线的方程 联立解得交点H的纵坐
19、标,说明直线轴,直线的斜率为0.【详解】(1)依题意,则直线,联立得;设,则,解得,故抛物线的方程为.(2),因为直线的斜率为1,则,所以,因为,所以线段中点的纵坐标为.直线的方程为,即 直线的方程为,即 联立解得即点的纵坐标为,即直线轴,故直线的斜率为0.如果直线的斜率不存在,结论也显然成立,综上所述,直线的斜率为0.【点睛】本题考查抛物线的方程、直线与抛物线的位置关系,还考查推理论证能力以及化归与转化思想,属于中档题.22、(1);(2)见解析【解析】(1)利用导数研究的单调性,分析函数性质,数形结合,即得解;(2)构造函数,可证得:,分析直线,与从左到右交点的横坐标,在,处的切线即得解.【详解】(1)设函数,令,令故在单调递减,在单调递增,时;时.(2)过点,的直线为,则令,.过点,的直线为,则,在上单调递增.设直线,与从左到右交点的横坐标依次为,由图知.在,处的切线分别为,同理可以证得,.记直线与两切线和从左到右交点的横坐标依次为,.【点睛】本题考查了函数与导数综合,考查了学生数形结合,综合分析,转化划归,逻辑推理,数学运算的能力,属于较难题.