1、第二章 一元一次不等式与一元一次不等式组 各种烟花给节日增添了喜庆的气氛,但你是否想过,烟花引火各种烟花给节日增添了喜庆的气氛,但你是否想过,烟花引火线的安全长度会与某种线的安全长度会与某种“不等关系不等关系”有关有关?也许,你对手机通话费以也许,你对手机通话费以及打折购物等消费方案的选择并不陌生,但你知道它们同样会涉及及打折购物等消费方案的选择并不陌生,但你知道它们同样会涉及一些一些“不等关系不等关系”吗吗?其实,与相等关系相比,不等关系更为普遍其实,与相等关系相比,不等关系更为普遍.与一元一次方程的学习类似,本章将研究不等式的性质、一元与一元一次方程的学习类似,本章将研究不等式的性质、一元
2、一次不等式一次不等式(组组)的解法,并通过解决一些简单的实际问题,体会不的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系的内在联系.2.1 不 等 关 系学 习 目 标1.1.理解不等式的意义,并能根据数量关系列不等式理解不等式的意义,并能根据数量关系列不等式;(重点)(重点)2.2.掌握不等式掌握不等式在我们日常生活中的简单应用在我们日常生活中的简单应用.(难点)(难点)情 境 导 入生产日期:生产日期:2013.03.052013.03.05保质期:保质期:1212个月
3、个月此例中有此例中有不等关系:不等关系:“小于或等于小于或等于12”12”新 课 导 入 现实生活中,数量之间存在着相等与不相等的关系现实生活中,数量之间存在着相等与不相等的关系.对对于不相等的关系问题,我们如何用式子来表示它们呢?于不相等的关系问题,我们如何用式子来表示它们呢?例如,小明的身高为例如,小明的身高为155cm155cm,小,小红的身高为红的身高为156cm156cm,则我们可以用不等号则我们可以用不等号“”或或“”155156 155或或155 156.155 156.155cm155cm156cm156cm合 作 探 究 如图,用两根长度均为如图,用两根长度均为 l cm c
4、m的绳子分别围成一个正方形和的绳子分别围成一个正方形和一个圆一个圆.(1 1)如果要使正方形)如果要使正方形的面积不大于的面积不大于25 25 cmcm2 2,那,那么绳长么绳长 l 应应满足怎样的关系式?满足怎样的关系式?2425l合 作 探 究 如图,用两根长度均为如图,用两根长度均为 l cmcm的绳子分别围成一个正方形和的绳子分别围成一个正方形和一个圆一个圆.(2 2)如果要使圆的面)如果要使圆的面积不小于积不小于100100 cm cm2 2,那么绳长,那么绳长 l 应满足怎样应满足怎样的关系式?的关系式?S S圆圆 =r=r2 2 100100l=2r=2r24100l 合 作 探
5、 究 如图,用两根长度均为如图,用两根长度均为 l cmcm的绳子分别围成一个正方形和的绳子分别围成一个正方形和一个圆一个圆.(3 3)当)当l=8=8时,正方形和圆的面积哪个大?时,正方形和圆的面积哪个大?l=12=12呢?改变呢?改变l的值的值再试一试,由此你得到什么猜想?再试一试,由此你得到什么猜想?长度为长度为l的绳子围成圆的面积一定大于围成正方形面积的绳子围成圆的面积一定大于围成正方形面积.当当l=12=12时,时,S S正正=9cm=9cm2 2,S S圆圆=cm=cm2 2新 知 小 结1.1.观察由上述问题得到的如下关系式,它们有什么共同特观察由上述问题得到的如下关系式,它们有
6、什么共同特点?点?(1 1)(2 2)(3 3)一般地,用符号一般地,用符号“”(或(或“”“”),),“”(或(或“”“”)连接连接的式子叫做不等式的式子叫做不等式 24l 25 2522 l10100 0 42l162l新 知 小 结2.2.常用的不等符号有下面常用的不等符号有下面5 5种:种:种类种类符号符号实际意义实际意义读法读法举例举例小于号小于号大于号大于号小于或等小于或等于号于号大于或等大于或等于号于号不等号不等号小于小于,不足不足小于小于2+5 102+5 85+6 8不大于不大于,不超过不超过 小于或等于小于或等于x 9 9不小于不小于,至少至少大于或等于大于或等于x 5 5
7、不相等不相等不等于不等于4 4 6 6典 例 精 析例例1 1 下列式子中:下列式子中:(1 1)-3-30 0;(2 2)4 4x+3+3y0+2y+5+5,是不等式的有(是不等式的有()A.1A.1个个 B.B.2 2个个 C.C.3 3个个 D.D.4 4个个 解析解析 :(1 1)()(2 2)(5 5)是不等式;是不等式;(3 3)()(4 4)不)不是不等式是不等式.C C合 作 探 究(1 1)铁路部门对旅客随身携带的行李有如下规定:每件行李)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高之和的长、宽、高之和不得超过不得超过160 cm.160 cm.设行李的长、宽
8、、高分别设行李的长、宽、高分别为为 a cm cm、b cm cm、c cm cm,请你列出行李的长、宽、高满足的关,请你列出行李的长、宽、高满足的关系式系式.a+b+c 160160合 作 探 究(2 2)通过测量一棵树的树围(树干的周长)可以估算出它的树龄。)通过测量一棵树的树围(树干的周长)可以估算出它的树龄。通常规定以树干离地面通常规定以树干离地面1.5 m1.5 m的地方为测量部位。某树栽种时的树的地方为测量部位。某树栽种时的树围为围为6 cm6 cm,在一定生长期内每年增加约,在一定生长期内每年增加约3 cm3 cm,设经过,设经过 x 年后这棵年后这棵树的树围树的树围超过超过30
9、 cm30 cm,请你列出,请你列出 x 满足的关系式满足的关系式.6+36+3x3030新 知 小 结1.1.列不等式就是用不等式表示代数式之间的不等关系列不等式就是用不等式表示代数式之间的不等关系2.2.列不等式的一般步骤:列不等式的一般步骤:(1)(1)分析题意,找出问题中的各种量;分析题意,找出问题中的各种量;(2)(2)弄清各种量之间的数量关系;弄清各种量之间的数量关系;(3)(3)用代数式表示各种量;用代数式表示各种量;(4)(4)用适当的不等号将具有不等关系的量连接起来用适当的不等号将具有不等关系的量连接起来典 例 精 析 例例2 2 列不等式:列不等式:(1)(1)a与与1 1
10、的和是正数:的和是正数:_;(2)(2)y的的2 2倍与倍与1 1的和大于的和大于3 3:_;(3)(3)x的一半与的一半与x的的2 2倍的和是非正数:倍的和是非正数:_;(4)(4)c与与4 4的和不大于的和不大于-2 2:_._.a1 10 02 2y1 13 31202xx c4-4-2 2针 对 练 习1.1.在数学表达式:(在数学表达式:(1 1)2 28;8;(2 2)3 3x+5+50;0;(3 3)x2 2-6;-6;(4 4)x=-2;=-2;(5 5)y 0;0;(6 6)x 50 50中,不等式的个数中,不等式的个数是(是()A.2 B.3 C.4 D.5A.2 B.3
11、C.4 D.5C C针 对 练 习2.2.你能用不等你能用不等式表示下列关系吗?式表示下列关系吗?(1 1)x的一半不小于的一半不小于1 1;(2 2)y与与4 4的和大于的和大于0.50.5;(3 3)a是负数;是负数;(4 4)b是非负数是非负数.(1)0.5(1)0.5x1.1.(2)(2)y+40.5.+40.5.(3)(3)a0.00 B.B.x00 C.C.x00 D.D.x00B B3 3.试写出一个含有未知数试写出一个含有未知数 y 的不等式的不等式:.y-10-104 4.请设计不同的实际背景来表示请设计不同的实际背景来表示下列不等式下列不等式:(1 1)x+y6 6;(2 2)3 3x+2 25 5随 堂 检 测5.5.用适当的符号表示下列关系:用适当的符号表示下列关系:(1)(1)a的的2 2倍比倍比a与与3 3的和小;的和小;(2)(2)y的的2 2倍与倍与5 5的差是非负数;的差是非负数;(3)(3)x的的3 3倍与倍与1 1的和小于的和小于x的的2 2倍与倍与5 5的差的差解:解:(1)2(1)2a a3.3.(2)2(2)2y50.50.(3)3(3)3x1212x5.5.课 堂 总 结概 念概 念不等关系不等关系用不等号连接的式子叫做不等式用不等号连接的式子叫做不等式根据数量关系根据数量关系列不等式列不等式常用不等符号常用不等符号找关键词找关键词