2019-2020学年吉林省吉林地区普通高中友好学校联合体高一下学期期末联考数学试题(解析版).doc

上传人(卖家):四川三人行教育 文档编号:843970 上传时间:2020-11-08 格式:DOC 页数:13 大小:756KB
下载 相关 举报
2019-2020学年吉林省吉林地区普通高中友好学校联合体高一下学期期末联考数学试题(解析版).doc_第1页
第1页 / 共13页
2019-2020学年吉林省吉林地区普通高中友好学校联合体高一下学期期末联考数学试题(解析版).doc_第2页
第2页 / 共13页
2019-2020学年吉林省吉林地区普通高中友好学校联合体高一下学期期末联考数学试题(解析版).doc_第3页
第3页 / 共13页
2019-2020学年吉林省吉林地区普通高中友好学校联合体高一下学期期末联考数学试题(解析版).doc_第4页
第4页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第 1 页 共 13 页 2019-2020 学年吉林省吉林地区普通高中友好学校联合体高学年吉林省吉林地区普通高中友好学校联合体高 一下学期期末联考数学试题一下学期期末联考数学试题 一、单选题一、单选题 1从某年级从某年级 500 名学生中抽取名学生中抽取 60 名学生进行体重的统计分析,就这个问题来说,下列 名学生进行体重的统计分析,就这个问题来说,下列 说法正确的是(说法正确的是( ) A500 名学生是总体名学生是总体 B每个被抽取的学生是个体每个被抽取的学生是个体 C抽取的抽取的 60 名学生的体重是一个样本名学生的体重是一个样本 D抽取的抽取的 60 名学生的体重是样本容量名学生的体

2、重是样本容量 【答案】【答案】C 【解析】【解析】根据抽样中总体,个体,样本,样本容量的概念进行判断. 【详解】 由题可知,从某年级 500名学生中抽取 60名学生进行体重的统计分析, 其中总体是该年级 500名学生的体重,个体是每名学生的体重, 样本是抽取的 60名学生的体重,样本容量是 60,故只有 C选项正确. 故选:C. 【点睛】 本题考查对总体,个体,样本,样本容量的理解,属于基础题. 2阅读如图所示的程序框图,运行相应的程序,输出的阅读如图所示的程序框图,运行相应的程序,输出的 S 的值等于(的值等于( ) A18 B20 C21 D40 【答案】【答案】B 第 2 页 共 13

3、页 【解析】【解析】由程序框图知:算法的功能是求 12 22212 n Sn 的值, 12123 221224 12915222123SS, 2 4 8 1 2 320 15 输出S=20故选B 3用秦九韶算法求多项式用秦九韶算法求多项式 f(x) 4x5x22 当当 x3 时的值时,需要时的值时,需要_次乘法 次乘法 运算和运算和_次加法次加法(或减法或减法)运算运算. ( ) A4,2 B5,3 C5,2 D6,2 【答案】【答案】C 【解析】【解析】 【详解】 f(x)4x 5x22(4x)x)x1)x)x2, 所以需要 5 次乘法运算和 2 次加法(或减法) 运算 4下列各数中与下列各

4、数中与 10101010( (4)相等的数是( 相等的数是( ) A76( (9) B103( (8) C2111( (3) D1000100( (2) 【答案【答案】D 【解析】【解析】把所给的数化为“十进制”数即可得出 【详解】 1010(4)1 43+0 42+1 41+0 4068(10) 对于 D:1000100(2)1 26+1 2268(10) 1010(4)1000100(2) 故选 D 【点睛】 本题考查了不同数位进制化为“十进制”数的方法,属于基础题 5若样本数据若样本数据 1210 ,x xx 的标准差为的标准差为 8 8,则数据,则数据 1 21x , 2 21x ,

5、10 21x 的标的标 准差为(准差为( ) A8 B15 C16 D32 【答案】【答案】C 【解析】【解析】试题分析:样本数据 1 x, 2 x, 10 x的标准差为8,所以方差为 64,由 214DXD x可得数据 1 21x , 2 21x , 10 21x 的方差为4 64,所以 标准差为4 6416 【考点】方差与标准差 第 3 页 共 13 页 6总体由编号总体由编号 01,,02,19,20 的 的 20 个个体组成利用下面的随机数表选取个个体组成利用下面的随机数表选取 5 个个个个 体, 选取体, 选取方法是随机数表第方法是随机数表第1行的第行的第5列和第列和第6列数字开始由

6、左到右依次选取两个数字,列数字开始由左到右依次选取两个数字, 则选出来的第则选出来的第 5 个个体的编号为个个体的编号为 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 A08 B07 C02 D01 【答案】【答案】D 【解析】【解析】从第一行的第 5 列和第 6 列起由左向右读数划去大于 20 的数分别为: 08,02,14,07,01,所以第 5 个个体是 01,选 D. 【考点】此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用 能力. 7在一个球内有一棱长

7、为在一个球内有一棱长为 1 的内接正方体,一动点在球内运动,则此点落在正方体内的内接正方体,一动点在球内运动,则此点落在正方体内 部的概率为(部的概率为( ) A 6 B 3 2 C 3 D 2 3 3 【答案】【答案】D 【解析】【解析】先求边长为1的内接正方体的体积,再求球的体积,最后求体积之比. 【详解】 由题意可知这是一个几何概型, 棱长为 1的正方体的体积 1 1V , 球的直径是正方体的体对角线长,故球的半径 3 2 R , 球的体积 3 2 433 322 V , 则此点落在正方体内部的概率 1 2 2 3 3 V P V . 第 4 页 共 13 页 故选:D 【点睛】 本题主

8、要考查几何概型,实际上是求几何体的体积之比,属于基础题. 8函数函数 1 tanx 23 y 在一个周期内的图象是在一个周期内的图象是( ( ) ) A B C D 【答案】【答案】A 【解析】【解析】方法一: 由题意得函数的周期为2T,故可排除 B,C,D选 A 方法二: 令 1 ytan0 23 x ,则有 1 , 23 xkkZ ,故 2 2, 3 xkkZ ,当 k0时,得 2 3 x ,可知函数图象与 x 轴一交点的横坐标为 2 3 ,故可排除 C、D 令 1 232 x ,得 5 3 x ,即函数图象的一条渐近线为 5 3 x ,故排除 B选 A 点睛: 已知函数的解析式判断函数图

9、象时通常采用排除的方法求解, 常从以下几个方面求解: (1)求出函数的定义域,根据定义域进行排除; (2)根据函数的性质进行排除,如函数的单调性、奇偶性、周期性; (3)结合特殊点,如函数图象与坐标轴的交点等; (4)结合函数的变化趋势判断,即根据当 x趋向无穷时函数值的变化趋势判断 9将函数将函数( )sin(2) 6 f xx 的图像向右平移的图像向右平移 6 个单位,那么所得的图像所对应的函个单位,那么所得的图像所对应的函 数解析式是(数解析式是( ) A sin2yx B cos2yx C 2 sin(2) 3 yx Dsin(2) 6 yx 【答案】【答案】D 【解析】【解析】试题分

10、析:由已知得平移后的图像所对应的函数解析式是 sin 2sin 2 666 yxx ,故选.D 【考点】三角函数图像变换. 第 5 页 共 13 页 10下列不等式中成立的是(下列不等式中成立的是( ) Asin 8 sin 10 Bsin 3sin 2 Csin 7 5 sin 2 5 Dsin 2cos 1 【答案】【答案】D 【解析】【解析】根据正弦函数和余弦函数的单调性判断,适当应用诱导公式变形 【详解】 sinyx 在 , 2 2 上递增,在 3 , 22 上递减, 而 28102 , 3 23 22 , sinsin 810 ,sin2sin3,,A B均错误; 7222 sins

11、insinsin 5555 ,C 错; sin 2=cos2 2 =cos2 2 , 且 02- 2 1cos 1, 即 sin 2cos 1. 故选:D. 【点睛】 本题主要考查三角函数的单调性,掌握正弦函数与余弦函数的单调性是解题关键 11已知已知6, 3,12aba b,则向量,则向量a在在b方向上的投影为(方向上的投影为( ) A4 B4 C2 D2 【答案】【答案】B 【解析】【解析】根据向量夹角公式求得夹角的余弦值;根据所求投影为cos,aa b求得结 果. 【详解】 由题意得: 122 cos, 6 33 a b a b ab 第 6 页 共 13 页 向量a在b方向上的投影为:

12、 2 cos,64 3 aa b 本题正确选项:B 【点睛】 本题考查向量a在b方向上的投影的求解问题, 关键是能够利用向量数量积求得向量夹 角的余弦值. 12函数函数 2 sin3cos3yxx 的最小值是(的最小值是( ) A 1 4 B0 0 C2 2 D6 6 【答案】【答案】B 【解析】【解析】 222 31 sin3cos3cos3cos2(cos), 24 yxxxxx cos1x时, min 0y ,故选 B. 二、填空题二、填空题 13在直径长为在直径长为20cm的圆的圆中,圆心角为中,圆心角为165时所对的弧长为 时所对的弧长为_ cm. 【答案】【答案】 55 6 【解析

13、】【解析】将角度使用弧度数表示,然后根据弧长公式计算可得结果. 【详解】 11 165165(rad) 18012 , 弧长 1155 10(cm) 126 l. 故答案为: 55 6 【点睛】 本题考查弧长公式,掌握公式,简单计算,属基础题. 14已知非零向量已知非零向量 1 e, 2 e不共线,如果不共线,如果 12 2ABee, 12 56BCee, 12 72CDee,则共线的三个点是,则共线的三个点是_ 【答案】【答案】A,B,D 【解析】【解析】根据条件即可得出 2BDAB ,从而得出AB,BD共线,进而得出 A,B, D三点共线. 第 7 页 共 13 页 【详解】 12 2AB

14、ee, BDBCCD121212 5672222eeeeeeAB , AB,BD共线,且有公共点B, A,B,D三点共线, 故答案为:A,B,D. 【点睛】 本题考查了向量加法的几何意义,向量的数乘运算,共线向量基本定理,考查了计算能 力,属于基础题. 15设角设角的终边经过点的终边经过点 ( 3,4)P ,那么,那么sin2cos_. 【答案】【答案】 2 5 【解析】【解析】根据任意角的三角函数的定义求得sin y r 和cos x r 的值,从而求得 sin2cos 的值 【详解】 解:由于角的终边经过点 ( 3,4)P ,那么3x,4y ,| 5rOP, 4 sin 5 y r , 3

15、 cos 5 x r , 2 sin2cos 5 , 故答案为: 2 5 【点睛】 本题主要考查任意角的三角函数的定义的应用,属于基础题 16函数函数sin 2 2 4 yx 的最小正周期是的最小正周期是_ 【答案】【答案】 2 【解析】【解析】先求出sin 2 4 yx 的最小正周期,即可得出sin 22 4 yx 的最 小正周期. 【详解】 函数sin 2 4 yx 最小正周期 2 2 T , 第 8 页 共 13 页 函数sin 22 4 yx 的最小正周期是 2 . 故答案为: 2 . 【点睛】 本题考查正弦型函数最小正周期的求法,属于基础题. 三、解答题三、解答题 17已知已知 3

16、tan 4 . (1)求)求 2 2sincoscos的值;的值; (2)求)求 15 sin(4)cos(3)coscos 22 13 cos()sin(3)sin()sin 2 的值的值 【答案】【答案】 (1) 22 25 ; (2) 3 4 . 【解析】【解析】 (1)利用 22 sincos1的特点,把原式除以 22 sincos,然后分子 分母同时除以 2 cos, 转化成关于tan的式子, 最后把tan的值代入即可求得答案; (2)利用诱导公式化简可得原式tan ,代入即可得结果. 【详解】 解: (1) 2 2sincoscos 222 22 2 sincossincoscos

17、 sincos 22 22 2sinsincoscos sincos 2 2 93 21 2tantan122 164 9 1tan25 1 16 . (2)原式 ( sin )( cos )( sin )cos 7 2 ( cos )sin() sin()sin 6 2 第 9 页 共 13 页 2 sincoscos 2 ( cos )sin ( sin)sin 2 2 2 sincossinsin tan cossincoscos , 把 3 tan 4 代入,得原式 3 4 . 【点睛】 本题主要考查了诱导公式同角三角函数基本关系的应用,三角函数恒等变换和化简求 值,弦切互化问题,属于

18、中档题. 18已知已知 (1,2)a , (1, 1)b r . (1)若)若为为2a b 与与a b 的夹角,求的夹角,求的值;的值; (2)若)若2a b 与与ka b 垂直,求垂直,求k的值的值. 【答案】【答案】 (1) 4 ; (2)0k ; 【解析】【解析】 (1)因为(1,2)a , (1, 1)b r ,求得2(3,3)ab,(0,3)ab,根据 (2) () cos |2| abab abab ,即可求得答案; (2)因为2a b 与ka b 垂直,可得 2=0abkab,结合已知条件,即可求 得答案. 【详解】 (1)(1,2)a , (1, 1)b r , 2 (3,3)

19、ab,(0,3)ab, (2) ()92 cos 2|2|3 18 abab abab . 0, 4 . (2)(1,2)a , (1, 1)b r (1,21)kkkab,2(3,3)ab 第 10 页 共 13 页 2ab 与ka b 垂直 (3,3) (1,21)0kk, 3 3 630kk , 解得:0k . 【点睛】 本题主要考查了求向量的夹角和根据向量垂直求参数, 解题关键是掌握向量垂直求参数 的方法,考查了分析能力和计算能力,属于基础题. 19已知函数已知函数y Asin( x)0,0,| 2 A 的图象的一个最高点为的图象的一个最高点为 (2,2 2),由这个最高点到相邻最低点

20、,图象与,由这个最高点到相邻最低点,图象与 x轴交于点轴交于点6,0,试求函数的解析式,试求函数的解析式. 【答案】【答案】2 2sin 84 yx . 【解析】【解析】由最高点坐标求出 A,再由(2,2 2),6,0可求出周期 T,进而求出,再 由特殊点求出. 【详解】 由已知条件知2 2A, 又624 4 T ,16T , 22 168T , 2 2sin 8 y , 图象过点6,0, 02 2sin6 8 , 3 2 4 kkZ ,又| 2 , 令0k ,得 4 , 2 2sin 84 yx . 【点睛】 本题考查三角函数的性质求参数, 熟记性质与参数间的关系是解题的关键, 属于基础题.

21、 20通过市场调查,得到某种产品的资金投入通过市场调查,得到某种产品的资金投入 x 万元与获得的利润万元与获得的利润 y 万元的数据,如表万元的数据,如表 第 11 页 共 13 页 所示:所示: (1)根据上表提供的数据,用最小二乘法求线性回归方程;)根据上表提供的数据,用最小二乘法求线性回归方程; (2)现投入资金)现投入资金 10 万元,求获得利润的估计值为多少万元?万元,求获得利润的估计值为多少万元? (参考公式:(参考公式: 1 22 1 n ii i n i i x ynxy b xnx , a ybx) 【答案】【答案】 (1)1.7.8 1yx ; (2)15.2 万元. 【解

22、析】【解析】 【详解】 (1) 23456 4 5 x , 23569 5 5 y 2 23 34 55 66 95 4 5 1.7 49 1625365 16 b , , 所以回归直线方程为: 1.71.8yx (2)当10 x 万元时, 1.7 10 1.815.2y $ 万元 【考点】线性回归方程 21甲、乙两人参加普法知识竞赛,共有甲、乙两人参加普法知识竞赛,共有 5 题,选择题题,选择题 3 个,判断题 个,判断题 2 个,甲、乙两人个,甲、乙两人 各抽一题各抽一题. (1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?)甲、乙两人中有一个抽到选择题,另一个抽到判断题的

23、概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?)甲、乙两人中至少有一人抽到选择题的概率是多少? 【答案】【答案】 (1) 3 5 (2) 9 10 【解析】【解析】首先用列举法,求得甲、乙两人各抽一题的所有可能情况. (1)根据上述分析,分别求得“甲抽到判断题,乙抽到选择题”和“甲、乙两人中有 一个抽到选择题,另一个抽到判断题”的概率,然后根据互斥事件概率加法公式,求得 “甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率. (2)根据上述分析,求得“甲、乙两人都抽到判断题”的概率,根据对立事件概率计 算公司求得“甲、乙两人中至少有一人抽到选择题” 的概率. 第 12

24、页 共 13 页 【详解】 把 3个选择题记为 123 ,x x x,2个判断题记为 12 ,p p“甲抽到选择题,乙抽到判断题” 的情况有 11 ,x p, 12 ,xp, 21 ,xp, 22 ,xp, 31 ,xp, 32 ,x p,共 6种;“甲 抽到判断题, 乙抽到选择题”的情况有 11 ,p x, 12 ,p x, 13 ,p x, 21 ,p x, 22 ,p x, 23 ,p x,共 6 种;“甲、乙都抽到选择题”的情况有 12 ,x x, 13 ,x x, 21 ,xx, 23 ,x x, 31 ,x x, 32 ,x x,共 6 种;“甲、乙都抽到判断题”的情况有 12 ,

25、p p, 21 ,pp,共 2 种. 因此基本事件的总数为666220 . (1)记“甲抽到选择题,乙抽到判断题”为事件 A,则 63 ( ) 2010 P A .记“甲抽到判 断题,乙抽到选择题”为事件 B,则 63 ( ) 2010 P B ,故“甲、乙两人中有一个抽到 选择题,另一个抽到判断题”的概率为 333 () 10105 P AB. (2)记“甲、乙两人至少有一人抽到选择题”为事件 C,则C为“甲、乙两人都抽到 判断题”,由题意 21 ( ) 2010 P C ,故“甲、乙两人至少有一人抽到选择题”的概率 为 19 ( )1( )1 1010 P CP C . 【点睛】 本小题主

26、要考查互斥事件概率计算,考查对立事件,属于基础题. 22已知函数已知函数 2 3 cossin3cos 34 f xxxx ,xR ()求)求 f x的最小正周期;的最小正周期; ()求)求 f x在在, 4 4 上的最小值和最大值上的最小值和最大值 【答案】【答案】 ();()最小值 1 2 和最大值 1 4 【解析】【解析】试题分析: (1)由已知利用两角和与差的三角函数公式及倍角公式将 f x的 解析式化为一个复合角的三角函数式,再利用正弦型函数sinyAxB的最 第 13 页 共 13 页 小正周期计算公式 2 T ,即可求得函数 f x的最小正周期; (2)由(1)得函数 ,分析它在闭区间上的单调性,可知函数 f x在区间 上是减函数,在区间上是增函数,由此即可求得函数 f x在闭 区间上的最大值和最小值也可以利用整体思想求函数 f x在闭区间 上的最大值和最小值 由已知,有 f x的最小正周期 (2) f x在区间 上是减函数,在区间上是增函数, , 函数 f x在闭区间上的最 大值为,最小值为 【考点】1两角和与差的正弦公式、二倍角的正弦与余弦公式;2三角函数的周期性 和单调性

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 考试试卷
版权提示 | 免责声明

1,本文(2019-2020学年吉林省吉林地区普通高中友好学校联合体高一下学期期末联考数学试题(解析版).doc)为本站会员(四川三人行教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|