1、 - 1 - 数 学 - 2 - 高一数学必修 1 知识网络 集合 1 2 3 4 12n xAxBABAB AnA ()元素与集合的关系:属于( )和不属于( ) ( )集合中元素的特性:确定性、互异性、无序性 集合与元素( )集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集 ( )集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法 子集:若 ,则,即 是 的子集。 、若集合 中有 个元素,则集合 的子集有个, 注 关系 集合 集合与集合 00 (2 -1) 2 3, , ,. 4 / n AA A B CABBCAC ABABxBxAAB ABABAB
2、 ABx xAxB AAAAABBAAB 真子集有个。 、任何一个集合是它本身的子集,即 、对于集合如果,且那么 、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则 是 的真子集。 集合相等:且 定义:且 交集 性质:, 运算 , / ()( )( )-() / ()()()()()() U UUUUUUU A ABBABABA ABx xAxB AAAAAABBAABAABBABABB Card ABCard ACard BCard AB C Ax xUxAA C AAC AAUCC AACABC AC B , 定义:或 并集 性质:, 定义:且 补集 性质:, ()()()
3、UUU CABC AC B - 3 - 函数 , , ABAx ByfBAB xyx fyyxy 映射定义:设 , 是两个非空的集合,如果按某一个确定的对应关系,使对于集合 中的任意一个元素 , 在集合 中都有唯一确定的元素 与之对应,那么就称对应 :为从集合 到集合 的一个映射 传统定义:如果在某变化中有两个变量并且对于 在某个范围内的每一个确定的值, 定义 按照某个对应关系都有唯一确定的值和它对应。那么 就是 的函数。记作 函数及其表示 函数 ( ). ,()()( ), 1212 ()()( ), 12 fx a ba xxbfxfxfxa ba b fxfxfxa ba b a 近代定
4、义:函数是从一个数集到另一个数集的映射。 定义域 函数的三要素值域 对应法则 解析法 函数的表示方法列表法 图象法 单调性 函数的基本性质 传统定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。 导数定义:在区间 ( )1( ) 2()( ) 00 ,( ) 0( ),( ) 0 ( ), yfxIMx IfxM xIfxMMyfx bfxfxa ba bfx fxa ba b 最大值:设函数的定义域为 ,如果存在实数满足:( )对于任意的,都有; ( )存在,使得。则称是函数的最大值 最值 最 上,若,则在上递增,是递增区间;如 则在上递减,是的递减区间。 ( )
5、1( ) 2()( ) 00 (1)()( ),( ) (2)()( ),( ) yfxINx IfxN xIfxNNyfx fxfx xDfx fxfx xDfx 小值:设函数的定义域为 ,如果存在实数 满足:( )对于任意的,都有; ( )存在,使得。则称 是函数的最小值 定义域 ,则叫做奇函数,其图象关于原点对称。 奇偶性定义域 ,则叫做偶函数,其图 ( )()( )(0)( ) ( ) 1 ,() 11 2 y fxfx TfxTfxT Tfx yy xa xyfx a a 象关于 轴对称。 奇偶函数的定义域关于原点对称 周期性:在函数的定义域上恒有的常数 则叫做周期函数, 为周期;
6、的最小正值叫做的最小正周期,简称周期 ( )描点连线法:列表、描点、连线 向左平移 个单位: 向右平移 个 平移变换 函数图象的画法 ( )变换法 ,() 11 ,( ) 11 ,( ) 11 101 1 1/() 1 1)01) 1 yy xa xyfx a bxx yb yy bfx bxx yb yy bfx xww wxwxyfwx yAA 单位: 向上平移 个单位: 向下平移 个单位: 横坐标变换:把各点的横坐标 缩短(当时)或伸长(当时) 到原来的倍(纵坐标不变),即 伸缩变换 纵坐标变换:把各点的纵坐标 伸长(或缩短(到 /( ) 1 22 1010 (,)2(2) 0000 2
7、2 1010 22 1010 (2) 00 11 11 2( 00 22 1010 A yyAyfx x xxxxx xyyyfxx y yyyyy x xxxxx x xyfxx y yyy x xxx y yyyf yyyyyy 原来的 倍 (横坐标不变), 即 关于点对称: 关于直线对称: 对称变换 关于直线对称: ) 1 1 ( ) 1 x x x y xyfx y y 关于直线对称: - 4 - 附: 一、函数的定义域的常用求法: 1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、 指数函数和对数函数的底数大于零且不等于 1;5、三角函数正切函数ta
8、nyx中 () 2 xkkZ ;余切函数cotyx中;6、如果函数是由实际意义确定的解析式,应依据 自变量的实际意义确定其取值范围。 二、函数的解析式的常用求法: 1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法 三、函数的值域的常用求法: 1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接 法 四、函数的最值的常用求法: 1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法 五、函数单调性的常用结论: 1、若( ), ( )f x g x均为某区间上的增(减)函数,则( )( )f xg x在这个区间上也为增(减)
9、函数 2、若( )f x为增(减)函数,则( )f x为减(增)函数 3、若( )f x与( )g x的单调性相同,则 ( )yf g x是增函数;若( )f x与( )g x的单调性不 同,则 ( )yf g x是减函数。 4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图 象。 六、函数奇偶性的常用结论: 1、如果一个奇函数在0 x处有定义,则(0)0f,如果一个函数( )yf x既是奇函数又 是偶函数,则( )0f x (反之不成立) 2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商
10、)为偶函数。 3、一个奇函数与一个偶函数的积(商)为奇函数。 4、两个函数( )yf u和( )ug x复合而成的函数,只要其中有一个是偶函数,那么该复合 函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。 5 、 若 函 数( )f x的 定 义 域 关 于 原 点 对 称 , 则( )f x可 以 表 示 为 11 ( ) ( )() ( )() 22 f xf xfxf xfx,该式的特点是:右端为一个奇函数和一个偶 函数的和。 - 5 - ,( )0( ) ( ) ,( )( )0, ( ) ,( ,),( )0, ( )0 ( )0 yf xfxxyfx yfxa bfaf
11、 b yfxa bca bf cc fx fx 零点:对于函数( )我们把使的实数 叫做函数的零点。 定理:如果函数在区间上的图象是连续不断的一条曲线,并且有 零点与根的关系 那么,函数在区间内有零点。即存在使得这个 也是方 程的根。(反之不成立) 关系:方程 函数与方程 函数的应用 ( )( ) (1) ,( )( )0, (2)( ,); (3)( ) ( )0, ( )( )0,( ,) 0 ( )( )0, 0 yfxyfxx a bfaf b a bc f c f cc faf cbcxa b f cf bacx 有实数根函数有零点函数的图象与 轴有交点 确定区间验证给定精确度 ;
12、求区间的中点 计算; 二分法求方程的近似解 若则 就是函数的零点; 若则令(此时零点); 若则令(此时零点( ,) (4)-,();24 c b abab ); 判断是否达到精确度 :即若则得到零点的近似值或否则重复。 几类不同的增长函数模型 函数模型及其应用用已知函数模型解决问题 建立实际问题的函数模型 , (0, ,) ()(0, ,) ()(0,0,) (01) 1 lo mn a na nm n aa rsrs a aaar sQ r srs aaar sQ rr s aba babrQ x yaaa x 根式:为根指数, 为被开方数 分数指数幂 指数的运算 指数函数性质 定义:一般地
13、把函数且叫做指数函数。 指数函数 性质:见表 对数: 基本初等函数 对数的运算 对数函数 g, log()loglog; logloglog; . loglog;(0,1,0,0) log log(01) 1 log ( ,0,1,0) log c a c N aN a MNMN aaa M MN aaa N n MnMaaMN aa yx aa a b ba ca cb a 为底数,为真数 性质 换底公式: 定义:一般地把函数且叫做对数函数 对数函数 性质:见表 且 yxx 幂函数 定义:一般地,函数叫做幂函数, 是自变量,是常数。 性质:见表2 - 6 - 表表 1 指数函数 0,1 x
14、yaaa 对数数函数 log0,1 a yx aa 定 义 域 xR 0,x 值 域 0,y yR 图 象 性 质 过定点(0,1)? 过定点(1,0) 减函数 增函数 减函数 增函数 (,0)(1,) (0,)(0,1) xy xy 时, 时, (,0)(0,1) (0,)(1,) xy xy 时, 时, (0,1)(0,) (1,)(,0) xy xy 时, 时, (0,1)(,0) (1,)(0,) xy xy 时, 时, ab ab ab ab 表表 2 幂函数()yxR p q 0 01 1 1 p q 为奇数 为奇数 奇函数 - 7 - p q 为奇数 为偶数 p q 为偶数 为奇
15、数 偶函数 第一象限 性质 减函数 增函数 过定点01( , ) - 8 - 高中数学必修高中数学必修 2 知识点知识点 一、直线与方程一、直线与方程 (1)直线的倾斜角)直线的倾斜角 定义: x 轴正向正向与直线向上方向向上方向之间所成的角叫直线的倾斜角。 特别地, 当直线与 x 轴平行或重合时, 我们规定它的倾斜角为 0 度。因此,倾斜角的取值范围是 0180 (2)直线的斜率)直线的斜率 定义:倾斜角不是 90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。 即tank。斜率反映直线与轴的倾斜程度。 当 90,0时,0k; 当 180,90时,0k; 当 90时,k
16、不存在。 过两点的直线的斜率公式:)( 21 12 12 xx xx yy k 注意下面四点:(1)当 21 xx 时,公式右边无意义,直线的斜率不存在,倾斜角为 90; (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程)直线方程 点斜式:点斜式:)( 11 xxkyy直线斜率 k,且过点 11, y x 注意:注意:当直线的斜率为 0时,k=0,直线的方程是y=y1。 当直线的斜率为 90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点 的横坐标都等于x1,所以它的
17、方程是x=x1。 斜截式:斜截式:bkxy,直线斜率为k,直线在y轴上的截距为b 两点式:两点式: 11 2121 yyxx yyxx ( 1212 ,xxyy)直线两点 11, y x, 22,y x 截矩式:截矩式:1 xy ab 其中直线l与x轴交于点( ,0)a,与y轴交于点(0, )b,即l与x轴、y轴的截距截距分别为, a b。 一般式:一般式:0CByAx(A,B 不全为不全为 0) 注意:注意: 1 各式的适用范围 2 特殊的方程如: 平行于 x 轴的直线:by (b 为常数) ; 平行于 y 轴的直线:ax(a 为常数) ; (5)直线系方程:即具有某一共同性质的直线)直线系
18、方程:即具有某一共同性质的直线 (一)平行直线系(一)平行直线系 平 行 于 已 知 直 线0 000 CyBxA( 00,B A是 不 全 为 0 的 常 数 ) 的 直 线 系 : 0 00 CyBxA(C 为常数) (二)过(二)过定点的直线系定点的直线系 ()斜率为k的直线系: 00 xxkyy,直线过定点 00, y x; ()过两条直线0: 1111 CyBxAl,0: 2222 CyBxAl的交点的直线系方程为 0 222111 CyBxACyBxA(为参数) ,其中直线 2 l不在直线系中。 (6)两直线平行与垂直)两直线平行与垂直 当 111: bxkyl, 222 :bxk
19、yl时, 212121 ,/bbkkll;1 2121 kkll 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点)两条直线的交点 0: 1111 CyBxAl 0: 2222 CyBxAl相交 - 9 - 交点坐标即方程组 0 0 222 111 CyBxA CyBxA 的一组解。 方程组无解 21/l l ; 方程组有无数解 1 l与 2 l重合 (8)两点间距离公式:)两点间距离公式:设 1122 (,),A x yB xy,()是平面直角坐标系中的两个点, 则 22 2121 |()()ABx
20、xyy (9)点到直线距离公式:)点到直线距离公式:一点 00,y xP到直线0: 1 CByAxl的距离 22 00 BA CByAx d (10)两平行直线距离)两平行直线距离公式公式 在任一直线上任取一点,再转化为点到直线的距离进行求解。 二、圆的方程二、圆的方程 1、圆的定义:、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程、圆的方程 (1)标准方程)标准方程 2 22 rbyax,圆心ba,,半径为 r; (2)一般方程)一般方程0 22 FEyDxyx 当04 22 FED时,方程表示圆,此时圆心为 2 , 2 ED ,半径为 FE
21、Dr4 2 1 22 当04 22 FED时,表示一个点; 当04 22 FED时,方程不表示任何图形。 (3)求圆方程的方法:)求圆方程的方法: 一般都采用待定系数法:先设后求。一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a,b,r;若利用一般方程,需要求出 D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系:、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断: (
22、1)设直线0:CByAxl,圆 2 22 :rbyaxC,圆心baC,到l的距离为 22 BA CBbAa d ,则有相离与Clrd;相切与Clrd;相交与Clrd (2)设直线0:CByAxl,圆 2 22 :rbyaxC,先将方程联立消元,得到一个一元 二次方程之后,令其中的判别式为,则有 相离与Cl0;相切与Cl0;相交与Cl0 注:如果圆心的位置在原点,可使用公式 2 00 ryyxx去解直线与圆相切的问题,其中 00, y x 表示切点坐标,r 表示半径。 (3)过圆上一点的切线方程:过圆上一点的切线方程: 圆 x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为 2 0
23、0 ryyxx (课本命题) 圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命 题的推广) 4、圆与圆的位置关系:、圆与圆的位置关系:通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。 设圆 2 2 1 2 11: rbyaxC, 2 2 2 2 22 :RbyaxC 两圆的位置关系常通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。 当rRd时两圆外离,此时有公切线四条; 当rRd时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当rRdrR时两圆相交,连心线垂直
24、平分公共弦,有两条外公切线; 当rRd时,两圆内切,连心线经过切点,只有一条公切线; 当rRd时,两圆内含; 当0d时,为同心圆。 三、立体几何初步三、立体几何初步 1、柱、柱、锥、台、球的结构特征、锥、台、球的结构特征 - 10 - (1)棱柱:定义)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相 平行,由这些面所围成的几何体。 分类分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示表示:用各顶点字母,如五棱柱 EDCBAABCDE 或用对角线的端点字母,如五棱柱 AD 几何特征几何特征:两底面是对应边平行的全等多边形;侧面、对角面
25、都是平行四边形;侧棱平行且相等; 平行于底面的截面是与底面全等的多边形。 (2)棱锥)棱锥 定义定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示表示:用各顶点字母,如五棱锥 EDCBAP 几何特征几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距 离与高的比的平方。 (3)棱台:定义)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示表示:用各顶点字母,
26、如五棱台 EDCBAP 几何特征几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点 (4)圆柱:定义)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个 矩形。 (5)圆锥:定义)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。 (6)圆台:定义:)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:几何特征:上下底面是两个圆
27、;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。 (7)球体:定义:)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右) 、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图、空间几何体的直观
28、图斜二测画法斜二测画法 斜二测画法特点:斜二测画法特点:原来与 x 轴平行的线段仍然与 x 平行且长度不变; 原来与 y 轴平行的线段仍然与 y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式()特殊几何体表面积公式(c 为底面周长,为底面周长,h 为高,为高, h 为斜高,为斜高,l 为母线)为母线) chS 直棱柱侧面积 rhS2 圆柱侧 2 1 chS 正棱锥侧面积 rlS 圆锥侧面积 )( 2 1 21 hccS 正棱台侧面
29、积 lRrS)( 圆 台 侧 面 积 lrrS2 圆柱表 lrrS 圆 锥 表 22 RRlrlrS 圆台表 (3)柱体、锥体、台体的体积公式)柱体、锥体、台体的体积公式 - 11 - VSh 柱 2 VS hr h 圆柱 1 3 VS h 锥 hrV 2 3 1 圆锥 1 () 3 VSS SS h 台 22 11 ()() 33 VSS SS hrrRR h 圆台 (4)球体的表面积和体积公式:)球体的表面积和体积公式:V球= 3 4 3 R ; S球面= 2 4 R 4、空间点、直线、平面的位置关系、空间点、直线、平面的位置关系 (1)平面)平面 平面的概念:平面的概念: A.描述性说明
30、; B.平面是无限伸展的; 平面的表示:平面的表示:通常用希腊字母、表示,如平面(通常写在一个锐角内) ; 也可以用两个相对顶点的字母来表示,如平面 BC。 点与平面的关系:点与平面的关系:点 A 在平面内,记作A;点A不在平面内,记作A 点与直线的关系:点与直线的关系:点 A 的直线 l 上,记作:Al; 点 A 在直线 l 外,记作 Al; 直线与平面的关系直线与平面的关系:直线 l 在平面内,记作 l;直线 l 不在平面内,记作 l。 (2)公理)公理 1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 (即直线在平面内,或者平面经过直线) 应用:应用:检验桌面是
31、否平; 判断直线是否在平面内 用符号语言表示公理用符号语言表示公理 1:,A l Bl ABl (3)公理)公理 2:经过不在同一条直线上的三点,有且只有一个平面。 推论:推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理公理 2 及其推论作用:及其推论作用:它是空间内确定平面的依据 它是证明平面重合的依据 (4)公理)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:符号:平面和相交,交线是 a,记作a。 符号语言:符号语言:,PABABl Pl 公理公理 3 的作用:的作用: 它是判定两个平面相交的方法。 它说明两个
32、平面的交线与两个平面公共点之间的关系:交线必过公共点。 它可以判断点在直线上,即证若干个点共线的重要依据。 (5)公理)公理 4:平行于同一条直线的两条直线互相平行 (6)空间直线与直线之间的位置关系)空间直线与直线之间的位置关系 异面直线定义:异面直线定义:不同在任何一个平面内的两条直线 异面直线性质异面直线性质:既不平行,又不相交。 异面直线判定:异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 异面直线所成角异面直线所成角:直线 a、b 是异面直线,经过空间任意一点 O,分别引直线 aa,bb,则 把直线 a和 b所成的锐角(或直角)叫做异面直线 a 和 b
33、所成的角。两条异面直线所成角的范围是 (0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。两条异面直线互相垂直。 说明说明: (1)判定空间直线是异面直线方法:根据异面直线的定义;异面直线的判定定理 (2)在异面直线所成角定义中,空间一点 O 是任取的,而和点 O 的位置无关。 求异面直线所成角步骤: - 12 - A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特 殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角 (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。)等角定理:如果一个角的两边
34、和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系)空间直线与平面之间的位置关系 直线在平面内有无数个公共点 三种位置关系的符号表示:三种位置关系的符号表示:a aA a (9)平面与平面之间的位置关系:)平面与平面之间的位置关系:平行没有公共点; 相交有一条公共直线。b 5、空间中的平行问题、空间中的平行问题 (1)直线与平面平行的判定)直线与平面平行的判定及其性质及其性质 线面平行的判定定理线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行 线面平行的性质定理:线面平行的性质定理:如果一条直线和一个平面平行,
35、经过这条直线的平面和这个平面相交, 那么这条直线和交线平行。线面平行线线平行 (2)平面与平面平行的判定及其性质)平面与平面平行的判定及其性质 两个平面平行的判定定理两个平面平行的判定定理 (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行 (线面平行面面平行) , (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行面面平行) , (3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理两个平面平行的性质定理 (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。 (面面平行线面平行) (2)如果两个平行平面都和第三个平面相
36、交,那么它们的交线平行。 (面面平行线线平行) 7、空间中的垂直问题、空间中的垂直问题 (1)线线、面面、线面垂直的定义)线线、面面、线面垂直的定义 两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。 线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。 平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图 形)是直二面角(平面角是直角) ,就说这两个平面垂直。 (2)垂直关系的判定和性质定理)垂直关系的判定和性质定理 线面垂直判定定理和性质定理线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平
37、面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 面面垂直的判定定理和性质定理面面垂直的判定定理和性质定理 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。 9、空间角问题、空间角问题 (1)直线与直线所成的角)直线与直线所成的角 两平行直线所成的角:规定为 0。 两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 两条异面直线所成的角:过空间任意一点 O,分别作与两条异面直线 a,b 平行
38、的直线ba , , 形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。 (2)直线和平面所成的角)直线和平面所成的角 平面的平行线与平面所成的角:规定为 0。 平面的垂线与平面所成的角:规定为 90。 平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和 这个平面所成的角。 求斜线与平面所成角的思路类似于求异面直线所成角: “一作,二证,三计算” 。 - 13 - 在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,注意挖掘题设中两个主要信息: (1)斜线上一点到面的垂线; (2)过斜线上的一点或过 斜
39、线的平面与已知面垂直,由面面垂直性质易得垂线。 (3)二面角和二面角的平面角)二面角和二面角的平面角 二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的 棱,这两个半平面叫做二面角的面。 二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内面内 分别作垂直于垂直于 棱的两条射线,这 两条射线所成的角叫二面角的平面角。 直二面角:平面角是直角的二面角叫直二面角。 两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直, 那么所成的二面角为直二面角 求二面角的方法 定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得
40、到平面角 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角 的平面角 7、空间直角坐标系、空间直角坐标系 (1)定义)定义:如图, , OBCDD ABC是单位正方体.以 A 为原点, 分别以 OD,O , A,OB 的方向为正方向,建立三条数轴x轴.y轴.z轴。 这时建立了一个空间直角坐标系 Oxyz. 1)O 叫做坐标原点 2)x 轴,y 轴,z 轴叫做坐标轴. 3)过每两个坐标轴的平面叫做坐标面。 (2)右手表示法:)右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为 x 轴 正方向,食指指向为 y 轴正向,中指指向则为
41、z 轴正向,这样也可以决定三轴间的相位置。 (3) 任意点坐标表示:) 任意点坐标表示: 空间一点 M 的坐标可以用有序实数组( , , )x y z来表示, 有序实数组( , , )x y z 叫 做点 M 在此空间直角坐标系中的坐标,记作( , , )M x y z(x 叫做点 M 的横坐标,y 叫做点 M 的纵坐 标,z 叫做点 M 的竖坐标) (4)空间两点距离坐标公式:)空间两点距离坐标公式: 2 12 2 12 2 12 )()()(zzyyxxd - 14 - 高一数学必修高一数学必修 3 3 公式总结以及例题公式总结以及例题 1 1 算法初步算法初步 秦九韶算法: 通过一次式的
42、反复计算逐步得出高次多项式的值, 对于一个秦九韶算法: 通过一次式的反复计算逐步得出高次多项式的值, 对于一个 n 次多项次多项 式,只要作式,只要作 n 次乘法和次乘法和 n 次加法即可。表达式如下:次加法即可。表达式如下: 12211 1 1 .axaxxaxaxaaxaxa nnn n n n n 例题:秦九韶算法计算多项式例题:秦九韶算法计算多项式 , 1876543 23456 xxxxxx, 0.4 x时当 ?运算需要做几次加法和乘法 答案: 6 , 6 1876543x :xxxxx即 理解算法的含义理解算法的含义:一般而言,对于一类问题的机械的、统一的求解方法称为算法,其意义具
43、 有广泛的含义,如:广播操图解是广播操的算法,歌谱是一首歌的算法,空调说明书是空调使用的 算法 (algorithm) 1. 描述算法有三种方式:自然语言,流程图,程序设计语言(本书指伪代码). 2. 算法的特征: 有限性:算法执行的步骤总是有限的,不能无休止的进行下去 确定性:算法的每一步操作内容和顺序必须含义确切,而且必须有输出,输出可以是一 个或多个。没有输出的算法是无意义的。 可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在一定时 间内可以完成,在时间上有一个合理的限度 3. 算法含有两大要素:操作:算术运算,逻辑运算,函数运算,关系运算等控制结构: 顺序结构,选
44、择结构,循环结构 流程图: (流程图: (flow chart): 是用一些规定的图形、连线及简单的文字说明表示算法及程序结构 的一种图形程序,它直观、清晰、易懂,便于检查及修改。 注意:注意:1. 画流程图的时候一定要清晰,用铅笔和直尺画,要养成有开始和结束的好习惯 2. 拿不准的时候可以先根据结构特点画出大致的流程,反过来再检查,比如:遇到判断框 时,往往临界的范围或者条件不好确定,就先给出一个临界条件,画好大致流程,然后检查这 个条件是否正确,再考虑是否取等号的问题,这时候也就可以有几种书写方法了。 3. 在输出结果时,如果有多个输出,一定要用流程线把所有的输出总结到一起,一起终结 到结
45、束框。 算法结构:算法结构: 顺序结构,选择结构,循环结构 A B Y N A B p N Y A p Y N p A - 15 - 直到型循环 当型循环 . .顺序结构(顺序结构(sequence structure sequence structure ) :是一种最简单最基本的结构它不存在条件判断、控制转 移和重复执行的操作,一个顺序结构的各部分是按照语句出现的先后顺序执行的。 .选择结构(选择结构(selection structure selection structure ) :) :或者称为分支结构。其中的判断框,书写时主要是注意临 界条件的确定。它有一个入口,两个出口,执行时只能执行一个语句,不能同时执行,其中 的 A,B 两语句可以有一个为空, 既不执行任何操作, 只是表明在某条件成立时, 执行某语句, 至于不成立时,不执行该语句,也不执行其它语句。 .循环结构(循环结构(cycle structurecycle structure) :它用来解决现实生活中的重复操作问题,分直到型(until)和 当型(while)两种结构(见上图)。当事先不知道是否至少执行一次循环体时(即不知道循环次 数时)用当型循环。 基本算法语句:基本算法语句:本书中