1、数学试卷参考答案 湖北省 2021 届部分重点中学高三上学期期末联考 数学试卷参考答案数学试卷参考答案 一、单项选择题:DBCACDCB 二、多项选择题:9.ACD10.ABD11.ACD12.BD 三、填空题:13.914.415.0177 yx16. 2 e 1. D 解析:因为), 1 ),( BA,所以BA, 1。 2. B 解析:因为i i i 43 34 ,则1, 0 nm,所以1 nm。 3. C 解析:抛物线的标准方程为yx 2 1 2 ,故其焦点坐标为 8 1 , 0 4.A 解析:方程 22 20 xyxa, 即 22 (1)1xya , 表示圆则需10a, 解得1a ,
2、因为21aa ,而反之不成立,所以“2a ”是“方程 22 20 xyxa表示圆”的 充分不必要条件。 5. C 解 析 : 由 题 意 得4tantan, 033tantan , 则3)tan( , 又 , 0、,可得0tan, 0tan ,所以 3 4 。 6. D 解析:若 8 盏灯笼任意挂,不同的挂法共有 8 8 A种,又左右两边四盏灯笼挂的顺序一定,故 共有70 4 4 4 4 8 8 AA A 种不同挂法。 (挂 8 盏灯笼的 8 个顺序位次中选 4 个挂左边 4 盏灯笼,共有 70 4 8 C种.) 7. C 解析: 由 342 32SSS 34 2aa , 又数列 n a是等比
3、数列, 则 1 2 n n a。 由 ji namnma, 成 等 差 数 列 , 得 ji nbmamn 2 , 即 211 - i 22222 jij mnnmmn , 则 822 2322 ji mn ,当且仅当3, 2 ji时等号成立,此时2, 4 nm,所以mn的最 小值为 8. 8. B 解析: 因为当0 x时, x axf )() 1( a, 且)(xf为R上偶函数, 故 | )( x axf 且在), 0 上单调递增。所以)2()( |2 | 22 xfaaxf xx ,故)2()(xfbxf |2|xbx 023 22 bbxx 对任意的 1, 0 bx成立,设 22 23)
4、(bbxxxg , 则 0) 1( 0)0( bg g ,解得 4 3 1 b,所以实数b的最大值为 4 3 。故选 B 9. ACD 解析:双曲线1 54 22 yx 与1 45 22 xy 的渐近线均为xy 2 5 ,故 A 正确;若过 0 , 3F的直线l与双曲线C的右支交于BA、,则此时通径最短为 5,若直线l与双曲线C的左右 两支分别交于BA、,则| AB最小为 4。故5|AB时,这样的直线l有 3 条,B 错误;因为双曲 线C的渐近线为 xy 2 5 ,直线l与双曲线C的两支各有一个交点,则直线l的斜率k满足 ) 2 5 , 2 5 ( k ,故 C 正确;过点2 , 1P可作 2
5、 条与渐近线平行的直线和两条切线,均与双曲线 只有 1 个交点,故这样的直线共有 4 条,D 正确。 10. ABD解 析 : 直 线CP与 1 BB所 成 角 即 为CP与 1 AA所 成 角CPA , 又 34 343 53 5 cos 22 CP AC CPA,故 A 正确;在平面 11A ABB 内,过点 P 作 CD1 的平行线, 点 M 在此平行线上均可,故 B 正确;设点M在直线AB上的射影为N,则当BDMC 时, BDNC ,在平面ABCD内过点C作BD的垂线,与直线AB的交点在BA的延长线上,故 C 不正确;点M到平面ABCD的距离即为点M到直线AB的距离,由抛物线的定义可知
6、此时点M 的轨迹是抛物线的一部分,故 D 正确. 11. ACD 解析: 由垂径定理可知, 外心 O 在AB上的投影为线段AB的中点, 所以 2 2 1 ABABAO , 故 A 成立;H为垂心,则 HCHBHCHAHBHA ,故 B 不正确;因为FEG、三点共 线,故存在实数t,使得 ACtABtAFtAEtAG)1 ()1 ( 又G为ABC的重心,故 ACABAG 3 1 3 1 ,所以 3 1 )1 ( 3 1 t t ,则 3 11 ,故 C 成立; 因为 0| cos|cos|cos|cos| BCBC CAC BCAC BAB BCAB BC CAC AC BAB AB , 所以
7、CAC AC BAB AB cos|cos| 与BC垂直,又H为垂心,则AH也与BC垂直,所以AH与 CAC AC BAB AB cos|cos| 共线,故 D 成立。 数学试卷参考答案 12. BD 解析:因为图象恰有三个交点NMP、,且PMN是直角三角形,可知PMN的高 为 2,且是等腰直角三角形,可得斜边长为22 ,即周期 22 T ,所以22 2 ,可得 2 2 ,故 B 正确;PMN的面积2222 2 1 ,故 A 不正确;当 2 25 , 0 x时, 2 5 ,x,由正弦、余弦函数图象可得: 44 3 且 4 13 2 5 4 9 ,又 2 | ,所以 4 , 4 ,故 D 正确;
8、 4 13 x,故 C 不正确。 13. 9 解析:二项式 n x x) 3 ( 的展开式中,各项系数和为 n 4 ,各项二项式系数和 n 2 ,所以 7224 nn ,可得3 n,则 3 ) 3 ( x x 的展开式中常数项为 9; 14. 4 解析:扇环的面积为2 2 1 2 1 2 1 2 2 rr,所以4 2 1 2 2 rr。 15.0177 yx解析:设角 A 的平分线交BC于D,则由角平分线定理得2 AB AC DB CD , 即CBCD 3 2 ,可求得) 3 2 , 3 7 ( D,可求得7 AD k,所以直线AD的方程为0177 yx 16. 2 e 解析:设 x a xx
9、f 2ln)(,则 22 1 )( x ax x a x xf ,又0 a)(xf在区间), 0(a 上单调递减,),(a上单调递增,所以baafxf 3ln)()( min ,则 a a a b3ln ,设 a a ag 3ln )( ,则 2 ln2 )( a a ag 当), 0( 2 ea时,0)( a g;当),( 2 ea时, 0)( a g)(ag在 区 间), 0( 2 e上 单 调 递 增 , 在 区 间),( 2 e上 单 调 递 减 , 故 22 max )()(eegag , a b 的最大值为 2 e 17.解: 2 ) 2 2cos(1 cossin)( x xxx
10、f 2 1 2sin 2 2sin1 2sin 2 1 x x x 2 分 (1)由Zkkxk ,2 2 22 2 可得Zkkxk , 44 故函数)(xf的单调递增区间为)( 4 , 4 Zkkk 4 分 (2)当 42 A x时,由0 2 1 )( xf得0cos) 2 sin( AA , 又), 0( A,则A为锐角。同理可得CB,均为锐角,即ABC 为锐角三角形 5 分 由可得, 222 cba ,此时ABC 为直角三角形,不符; 若选: 由可得圆 O 的圆心到直线的距离为3 21 3 ,故2342 a 又ABC 的外接圆直径 A a R sin 2 ,可得 Asin 2 4 6 A
11、6 分 由正弦定理得:CcBbsin4,sin4 ABC 的面积) 6 5 sin(sin4sinsin4sin 2 1 BBCBAbcS 3) 3 2sin(23cos32sinsin32cossin2 2 BBBBBB 8 分 又ABC 为锐角三角形,) 2 , 3 ( B 9 分 当 23 2 B,即 12 5 B时,ABC 的面积S有最大值为32 ; 10 分 若选: 由可得3) 6 sin(2 A,则 2 3 ) 6 sin( A,又A为锐角, 6 A 6 分 后面解法同上; 若选: 由可得圆 O 的圆心到直线的距离为3 21 3 ,故2342 a 由可得3) 6 sin(2 A,则
12、 2 3 ) 6 sin( A,又A为锐角, 6 A 6 分 由正弦定理得4 6 sin 2 sin 2 A a R,后面解法同上; 18.解: (1)由12 1 naa nn 可得)(2) 1( 1 nana nn ,又21 1 a 故nan 是首项为2,公比为2的等比数列; 6 分 (2)由(1)知 n n na2 ,则na n n 2 7 分 11 1 1 1112 nnnn nn nn n n aaaa aa aa b9 分 数学试卷参考答案 3 1 12 1 3 111111111 1 1113221 naaaaaaaa S n nnn n 得证 12 分 19. 解: (1)取BE
13、中点为O,由题意可得四边形ABCE为正方形,则BESO ,BECO , 又平面SBE 平面BCDE,面SBE 平面BEBCDE OCSO 。 2 分 故OSOCOB,两两垂直,以O为原点,OB为x轴,OC为y轴,OS为z轴建立空间直角坐 标系,不妨设 2BCEDSESB ,则2 CDBE, 则 1 , 0 , 0S, 0 , 0 , 1B, 0 , 1 , 0C, 0 , 1 , 2 D, 设平面SBC的法向量为 1111 ,zyxn ,则 0 0 0 0 11 11 1 1 zx zy SBn SCn , 令1 1 x得1 , 1 , 1 1 n, 设平面SCD的法向量为 2222 ,zyx
14、n , 02 0 0 0 222 22 2 2 zyx zy SDn SCn , 令1 2 y得 1 , 1 , 0 2 n,记二面角DSCB为, 则 3 6 | | |cos| 21 21 nn nn ,那么 3 3 sin; 所以,二面角DSCB-的正弦值为 3 3 8 分 (2)假设直线SB上存在点P使得PD平面SBC, 不妨设 aaP 1 , 0 ,,所以 aaPD, 1 ,2 , 又 1 , 1 , 1 1 n ,由 1 /nPD 得 1 12 a a ,无解,故不存在点P使得PD平面SBC. 12 分 19.解: (1) 速效人数非速效人数合计 服用 A 药物7030100 服用
15、B 药物4060100 合计11090200 由题意可得 635. 62 .18 11 200 90110100100 40306070200 2 2 K, 4 分 所以有%99的把握认为病人服用药物A比服用药物B更速效;5 分 (2)11a或18; 7 分 由可得18a,用 乙甲 tt ,表示所选取人的康复时间,由题意可得基本事件总数有 49 个, 满足题意的基本事件有12,13,12,14,13,14,12,15,13,15,14,15,12,16,13,16, 14,16,15,16共 10 个,所以 49 10 49 4321 P. 12 分 21.解:(1) 圆的标准方程为647 2
16、 2 yx, 由题意得ADBE /,因 为ACAD , 所 以ACDADC, 即EBCECB, 所 以 ECEB ,所以728ABACEBEA,满足椭圆的定义, 所以动点E的轨迹方程为1 916 22 yx . 4 分 (2) 设 11, y xM、 22, y xN, 由题意可得6 33 2 2 1 1 21 x y x y kk, ()当直线MN斜率存在时,不妨设直线MN的方程为 bkxy, 联立 1 916 22 yx bkxy 消去y化简得01441632169 222 bkbxxk 2 2 21 2 21 169 14416 , 169 32 k b xx k kb xx 6 分 因
17、为 6 3333 2 2 1 1 2 2 1 1 21 x bkx x bkx x y x y kk 整理得0362 2121 xxbxxk, 代入得03231441662 2 kbbbk,化简可得033bbk 8 分 所以时过上顶点舍去,因为当333bbkb代入直线MN的方程可得31 xky, 所以直线MN过定点31 ,. 9 分 ()当直线MN斜率不存在时,6 3333 1 1 1 1 2 2 1 1 21 x y x y x y x y kk, 可得1 21 xx,此时直线MN的方程为1x,过31 ,. 11 分 综上所述,直线MN过定点31 ,. 12 分 22.解: (1) xxxx
18、f11333 2 , 1 分 所以 xf在区间1,和,1上单调递增,在1 , 1上单调递减, 2 分 因为 00 f,且 axf有两个正跟,所以 10faf,即2 , 0a; 3 分 (2)方法一:由题意得axxxf 3 111 3)( ;axxxf 3 222 3)( +得:)(3)()()(32 2 221 2 121 3 2 3 121 xxxxxxxxxxa 1-得:)(3)()()(30 2 221 2 121 3 2 3 121 xxxxxxxxxx 3 2 221 2 1 xxxx,将代入得: 2121 )(xxxxa 5 分 数学试卷参考答案 由(1)知310 21 xx,设)
19、2()()(xfxfxF )1 , 0( x 则0) 1(6)2(3333 )2()()( 222 xxxxfxfxF )(xF在) 1 , 0(上单调递减0) 1 ()2()()( 111 FxfxfxF )2()()( 112 xfxfxf ,又)(xf在), 1 ( 上单调递减 12 2xx 2 21 xx, 9 分 故要证 2 2 12 a xx ,只需证 2 )( 2121 2112 xxxx xxxx 即证4)( 221 xxx,因为2 21 xx且3 2 x,该不等式成立 故 2 2 12 a xx 成立 12 分 方法二:曲线 xfy 在0 , 0和03,处的切线方程为: 1 lxy3与36: 2 xyl, 且由图象可知当)3, 0( x时,函数)(xf夹在直线 1 l与 2 l之间, 直线 ay 与 21 ll、分别交于 a a , 3 与 a a , 6 3, 所以 2 2 2 3 36 3 12 aaaa xx 。 (此方法酌情打分)