1、7-6-3.计数之对应法.题库教师版page1of7 7-6-37-6-3 计数之对应法计数之对应法 教学目标教学目标 前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树 形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳 法、整体法、对应法、递推法对这些计数方法与技巧要做到灵活运用 例题精讲例题精讲 将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量 上是相同的事实上插入法和插板法都是对应法的一种表现形式 模块一、图形中的对应关系 【例【例 1】 在在 88 的方格棋盘
2、中,取出一个由三个小方格组成的的方格棋盘中,取出一个由三个小方格组成的“L”形(如图形(如图) ,一共有多少种不同的方法?,一共有多少种不同的方法? 【考点】计数之图形中的对应关系【难度】3 星【题型】解答 【解析】注意:数“不规则几何图形”的个数时,常用对应法 第 1 步:找对应图形每一种取法,有一个点与之对应,这就是图中的 A 点,它是棋盘上横线与竖线的 交点,且不在棋盘边上 第 2 步:明确对应关系从下图可以看出,棋盘内的每一个点对应着 4 个不同的取法(“L”形的“角” 在 22 正方形的不同“角”上) 第 3 步:计算对应图形个数由于在 88 的棋盘上,内部有 77=49(个)交叉点
3、, 第 4 步:按照对应关系,给出答案故不同的取法共有 494=196(种) 评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等 的原则,把问题转化成求另一个集合的元素个数 【答案】196 【例【例 2】 在在 88 的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色 小方格的长方形共有多少个?小方格的长方形共有多少个? 【考点】计数之图形中的对应关系【难度】3 星【题型】解答 【解析】首先可以知道题中所讲的1 3长方形中间的那个小主格为黑色,这是因
4、为两个白格不相邻,所以不 能在中间显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中下面分两种情况来分 7-6-3.计数之对应法.题库教师版page2of7 析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的1 3长方形(一横一竖);第二种情 况,位于边上的黑色方格只能对应一个1 3长方形由于在棋盘上的 32 个黑色方格中,位于棋盘内 部的 18 个,位于边上的有 12 个,位于角上的有 2 个,所以共有1821248个这样的长方形本 题也可以这样来考虑:事实上,每一行都有 6 个1 3长方形,所以棋盘上横、竖共有1 3长方形 6 8296 个由于棋盘上的染色具有对称性,因此包含
5、两个白色小方格与一个黑色小方格的长方 形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系, 这说明它们各占一半, 因此所求的长方形个数为96248个 【答案】48 【巩固】【巩固】 用一张如图所示的纸片盖住用一张如图所示的纸片盖住66方格表中的四个小方格,共有多少种不同的放置方法?方格表中的四个小方格,共有多少种不同的放置方法? 【考点】计数之图形中的对应关系【难度】3 星【题型】解答 【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66方格表中的位置易见它不能位于 四个角上;若黑格位于方格表中间如图浅色阴影所示的44正方形内的某格时,纸片有 4 种不同的 放法,共
6、计44464 种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之 确定,即只有 1 种放法,此类放法有4416种 所以,纸片共有641680种不同的放置方法 【答案】80种 【例【例 3】 图中可数出的三角形的个数为图中可数出的三角形的个数为 【考点】计数之图形中的对应关系【难度】4 星【题型】填空 【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三 角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三 角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有 8 条大线段,因此有 3 8
7、 56C 个三角形 【答案】56个三角形 【例【例 4】 如图所示如图所示,在直线在直线AB上有上有 7 个点个点,直线直线CD上有上有 9 个点个点以以AB上的点为一个端点上的点为一个端点、CD上的点为上的点为 另一个端点的所有线段中,任意另一个端点的所有线段中,任意 3 条线段都不相交于同一个点,求所有这些线段在条线段都不相交于同一个点,求所有这些线段在AB与与CD之间之间 的交点数的交点数 【考点】计数之图形中的对应关系【难度】4 星【题型】解答 ? C ? D ? B ? A 【解析】【解析】常规的思路是这样的:直线AB上的 7 个点,每个点可以与直线CD上的 9 个点连 9 根线段,
8、然后再 分析这些线段相交的情况如右图所示,如果注意到下面这个事实:对于直线AB上的任意两点M、 7-6-3.计数之对应法.题库教师版page3of7 N与直线CD上的任意两点P、Q都可以构成一个四边形MNQP, 而这个四边形的两条对角线MQ、 NP的交点恰好是我们要计数的点,同时,对于任意四点(AB与CD上任意两点)都可以产生一个这 样的交点,所以图中两条线段的交点与四边形有一一对应的关系这说明,为了计数出有多少个交 点, 我们只需要求出在直线AB与CD中有多少个满足条件的四边形MNQP就可以了! 从而把问题转 化为:在直线AB上有 7 个点,直线CD上有 9 个点四边形MNQP有多少个?其中
9、点M、N位于 直线AB上,点P、Q位于直线CD上这是一个常规的组合计数问题,可以用乘法原理进行计算: 由于线段MN有 2 7 21C 种选择方式,线段PQ有 2 9 36C 种选择方式,根据乘法原理,共可产生 21 36756个四边形因此在直线AB与CD之间共有 756 个交点 【答案】756个交点 模块二、数字问题中的对应关系 【例【例 5】 有多少个四位数有多少个四位数,满足个位上的数字比千位数字大满足个位上的数字比千位数字大,千位数字比百位大千位数字比百位大,百位数字比十位数字大?百位数字比十位数字大? 【考点】计数之数字问题中的对应关系【难度】4 星【题型】解答 【解析】【解析】由于四
10、位数的四个数位上的数的大小关系已经非常明确,而对于从 09 中任意选取的 4 个数字,它 们的大小关系也是明确的,那么由这 4 个数字只能组成 1 个符合条件的四位数(题目中要求千位比百 位大,所以千位不能为 0,本身已符合四位数的首位不能为 0 的要求,所以进行选择时可以把 0 包 含在内),也就是说满足条件的四位数的个数与从 09 中选取 4 个数字的选法是一一对应的关系, 那么满足条件的四位数有 4 10 109 87 210 432 1 C 个 【答案】210个 【巩固】【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个?三位数中,百位数比十位数大,十位数比个位数大的数
11、有多少个? 【考点】计数之数字问题中的对应关系【难度】4 星【题型】解答 【解析】相当于在 10 个数字中选出 3 个数字, 然后按从大到小排列.共有 1098 (321) =120 种 实际上, 前铺中每一种划法都对应着一个数 【答案】120种 【例【例 6】 数数 3 可以用可以用 4 种方法表示为一个或几个正整数的和,如种方法表示为一个或几个正整数的和,如 3,12,21,1 1 1 问:问:1999 表示表示 为一个或几个正整数的和的方法有多少种?为一个或几个正整数的和的方法有多少种? 【考点】计数之数字问题中的对应关系【难度】4 星【题型】解答 【解析】【解析】我们将 1999 个
12、1 写成一行,它们之间留有 1998 个空隙,在这些空隙处,或者什么都不填,或者填 上“”号例如对于数 3,上述 4 种和的表达方法对应:1 1 1,11 1,1 11,111 可见,将 1999 表示成和的形式与填写 1998 个空隙处的方式之间是一一对应的关系,而每一个空隙 处都有填“”号和不填“”号 2 种可能,因此 1999 可以表示为正整数之和的不同方法有 1998 19982 2222 个 相乘 种 【答案】 1998 2种 【例【例 7】 请问至少出现一个数码请问至少出现一个数码 3,并且是,并且是 3 的倍数的五位数共有多少个?的倍数的五位数共有多少个? 【考点】计数之数字问题
13、中的对应关系【难度】4 星【题型】解答 【关键词】小学数学竞赛 【解析】【解析】五位数共有 90000 个,其中 3 的倍数有 30000 个可以采用排除法,首先考虑有多少个五位数是 3 的倍数但不含有数码 3.首位数码有 8 种选择,第二、三、四位数码都有 9 种选择当前四位的数码 确定后,如果它们的和除以余数为 0,则第五位数码可以为 0、6、9;如果余数为 1,则第五位数码 可以为 2、5、8;如果余数为 2,则第五位数码可以为 1、4、7.可见只要前四位数码确定了,第五位 数码都有 3 种选择,所以五位数中是 3 的倍数但不含有数码 3 的数共有8 999317496 个 所以满足条件
14、的五位数共有300001749612504个 【答案】12504个 模块三、对应与阶梯型标数法 【例【例 8】 游乐园的门票游乐园的门票 1 元元 1 张,每人限购张,每人限购 1 张现在有张现在有 10 个小朋友排队购票,其中个小朋友排队购票,其中 5 个小朋友只有个小朋友只有 1 元元 7-6-3.计数之对应法.题库教师版page4of7 的钞票,另外的钞票,另外 5 个小朋友只有个小朋友只有 2 元的钞票,售票员没有准备零钱问有多少种排队方法,使售票元的钞票,售票员没有准备零钱问有多少种排队方法,使售票 员总能找得开零钱?员总能找得开零钱? 【考点】计数之对应与阶梯型标数法【难度】5 星
15、【题型】解答 【解析】【解析】与类似题目找对应关系要保证售票员总能找得开零钱,必须保证每一位拿 2 元钱的小朋友前面的 若干小朋友中,拿 1 元的要比拿 2 元的人数多,先将拿 1 元钱的小朋友看成是相同的,将拿 2 元钱 的小朋友看成是相同的,可以利用斜直角三角模型在下图中,每条小横线段代表 1 元钱的小朋友, 每条小竖线段代表 2 元钱的小朋友,因为从A点沿格线走到B点,每次只能向右或向上走,无论到 途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中 从A到B有多少种不同走法使用标数法,可求出从A到B有 42 种走法 ? A ? B ? 42 ? 42
16、? 28 ? 14 ? 5 ? 14 ? 14 ? 9 ? 4 ? 5 ? 5 ? 3 ? 2 ? 2 ? 1 ? 1 ? 1 ? 1 ? 1 ? 1 ? 1 但是由于 10 个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿 2 元的小朋友,5 个 人共有5120!种排法;第二步排拿到 1 元的小朋友,也有 120 种排法,所以共有5514400! !种排 队方法这样,使售票员能找得开零钱的排队方法共有42 14400604800(种) 【答案】604800种 【例【例 9】 学学和思思一起洗学学和思思一起洗5个互不相同的碗(顺序固定个互不相同的碗(顺序固定) ,思思洗好的碗一个一个
17、往上摞,学学再从最上,思思洗好的碗一个一个往上摞,学学再从最上 面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法种不同的摞法 【考点】计数之对应与阶梯型标数法【难度】5 星【题型】解答 【关键词】学而思杯,5 年级,第 7 题 【解析】方法一:如下所示,共有42种不同的摞法: 54321,45321,35421,53421,34521,5423 1, 4523 1,2543 1,5243 1,2453 1,52341,25341, 23541,23451,543 12
18、,453 12 ,53412 ,35412 , 34512 ,54132 ,45132 ,15432,51432 ,14532, 51342 ,15342,13542,13452,54123 ,45123 , 15423,51423 ,14523,12543,51243 ,15243, 12453,12354,12534,15234,51234 ,12345。 方法二:我们把学学洗的5个碗过程看成从起点向右走5步(即洗几个碗就代表向右走几步) , 思思拿5个碗的过程看成是向上走5步(即拿几个碗就代表向上走几步) ,摞好碗的摞法,就代 表向右、向上走5步到达终点最短路线的方法.由于洗的碗要多余拿
19、的碗,所以向右走的路线要多 余向上走的路线,所以我们用下面的斜三角形进行标数,共有42种走法,所以共有 42 种不同的 摞法。 【答案】42种 【巩固】【巩固】学学和思思一起洗学学和思思一起洗4个互不相同的碗个互不相同的碗(顺序固定顺序固定) ,思思洗好的碗一个一个往上摞思思洗好的碗一个一个往上摞,学学再从最上面学学再从最上面 7-6-3.计数之对应法.题库教师版page5of7 一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,问学学摞好的碗一共有一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,问学学摞好的碗一共有种种 不同的摞法。不同的摞法。 【考点】计数之对应与阶梯型标数法
20、【难度】4 星【题型】填空 【关键词】学而思杯,3 年级,第 7 题 【解析】按思思洗碗的顺序将这4个碗依次标号为1、2、3、4, 则学学摞好的碗一共有如下14种摆法:1234, 1243,1324,1342,1432,2134,2143,2314,2341,2431,3214,3241,3421,4321。 【答案】14 【例【例 10】一个正在行进的一个正在行进的 8 人队列人队列,每人身高各不相同每人身高各不相同,按从低到高的次序排列按从低到高的次序排列,现在他们要变成并列的现在他们要变成并列的 2 列纵队列纵队,每列仍然是按从低到高的次序排列每列仍然是按从低到高的次序排列,同时要求并排
21、的每两人中左边的人比右边的人要矮同时要求并排的每两人中左边的人比右边的人要矮, 那么,那么,2 列纵队有列纵队有种不同排法种不同排法. 【考点】计数之对应与阶梯型标数法【难度】5 星【题型】填空 【关键词】第七届,走美杯 【解析】【解析】首先,将 8 人的身高从低到高依次编号为1 2 3 4 5 6 7 8、 、 、,现在就相当于要将这 8 个数填到一个42 的方格中,要求每一行的数依次增大,每一列上面的要比下面的大 下面我们将1 2 3 4 5 6 7 8、 、 、依次往方格中填,按照题目规则,很容易就发现:第二行填的的数字的个 数永远都小于或等于第一行数字填的个数也就是说,不能出现下图这样
22、的情况 而这个正好是“阶梯型标数”题型的基本原则于是,我们可以把原题转化成: 在这个阶梯型方格中,横格代表在第一行的四列,纵格代表第二行的四列,那么此题所有标数的方 法就相当于从 A 走到 B 的最短路线有多少条 例如,我们选择一条路线: 它对应的填法就是: 7-6-3.计数之对应法.题库教师版page6of7 最后,用“标数法”得出从 A 到 B 的最短路径有 14 种,如下图: 【答案】14种 【巩固【巩固】将将 112 这这 12 个数填入到个数填入到 2 行行 6 列的方格表中列的方格表中,使得每行右边比左边的大使得每行右边比左边的大,每一列上面比下面的大每一列上面比下面的大, 共有多
23、少种填法?共有多少种填法? 【考点】计数之对应与阶梯型标数法【难度】5 星【题型】解答 【解析】【解析】根据对应关系,再运用阶梯型标数法画图如下: ? 132 ? 42 ? 14 ? 14 ? 5 ? 5 ? 2 ? 1 ? 1 ? 1 ? 1 ? 1 ? 1 ? 1 ? 132 ? 90 ? 48 ? 42 ? 28 ? 20 ? 14 ? 9 ? 6 ? 5 ? 4 ? 3 ? 2 ? 1 共有 132 种填法 【答案】132种 【例【例 11】在一次小组长选举中,铮铮与昊昊两人作为候选人参加竞选,一共得了在一次小组长选举中,铮铮与昊昊两人作为候选人参加竞选,一共得了 7 张选票。在将张选
24、票。在将 7 张选票张选票 逐一唱票的过程中,昊昊的得票始终没有超过铮铮。那么这样的唱票过程有逐一唱票的过程中,昊昊的得票始终没有超过铮铮。那么这样的唱票过程有种不同的情况。种不同的情况。 【考点】计数之对应与阶梯型标数法【难度】5 星【题型】填空 【关键词】学而思杯,6 年级,1 试,第 14 题 【解析】标数法(1)7 张全是铮铮,1 种; (2)6 张铮铮,1 张昊昊,6 种; (3)5 张铮铮,2 张昊昊,14 种; (4)4 张铮铮,3 张昊昊,14 种。 一共 35 种。 【答案】35种 模块四、不完全对应关系 【例【例 12】圆周上有圆周上有 12 个点个点,其中一个点涂红其中一
25、个点涂红,还有一个点涂了蓝色还有一个点涂了蓝色,其余其余 10 个点没有涂色个点没有涂色,以这些点为顶以这些点为顶 7-6-3.计数之对应法.题库教师版page7of7 点的凸多边形中点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形其顶点包含了红点及蓝点的多边形称为双色多边形;只包含红点只包含红点(蓝点蓝点)的多边形的多边形 称为红色称为红色(蓝色蓝色)多边形不包含红点及蓝点的称无色多边形试问,以这多边形不包含红点及蓝点的称无色多边形试问,以这 12 个点为顶点的所有凸个点为顶点的所有凸 多边形多边形(边数可以从三角形到边数可以从三角形到 12 边形边形)中,双色多边形的个数与无色
26、多边形的个数,哪一种较多?中,双色多边形的个数与无色多边形的个数,哪一种较多? 多多少个?多多少个? 【考点】计数之不完全对应关系【难度】4 星【题型】解答 【解析】【解析】从任意一个双色的N边形出发(5N 时),在去掉这个双色多边形中的红色顶点与蓝色顶点后,将得 到一个无色的2N 边形;另一方面,对于一个任意的无色的M边形,如果加上红色顶点和蓝色顶 点,就得到一个双色的2M 边形,所以无色多边形与双色多边形中的五边形以上的图形是一一对 应的关系,所以双色多边形的个数比较多,多的是双色三角形和双色四边形的个数而双色三角形 有 10 个,双色四边形有 2 10 45C个,所以双色多边形比无色多边
27、形多104555个 【答案】双色多边形比无色多边形多104555个 【例【例 13】有一类各位数字各不相同的五位数有一类各位数字各不相同的五位数M,它的千位数字比左右两个数字大,十位数字也比左右两位,它的千位数字比左右两个数字大,十位数字也比左右两位 数字大另有一类各位数字各不相同的五位数数字大另有一类各位数字各不相同的五位数W,它的千位数字比左右两个数字小,十位数字也,它的千位数字比左右两个数字小,十位数字也 比左右两位数字小请问符合要求的数比左右两位数字小请问符合要求的数M与与W,哪一类的个数多?多多少?,哪一类的个数多?多多少? 【考点】计数之不完全对应关系【难度】5 星【题型】解答 【
28、解析】【解析】M与W都是五位数,都有千位和十位与其它数位的大小关系,所以两类数有一定的对应关系比如 有一个符合要求的五位数MABCDE(A不为 0),那么就有一个与之相反并对应的五位数 (9)(9)(9)(9)(9)ABCDE必属于4类,比如13254为M类,则与之对应的86754为W类 所以对于M类的每一个数,1n 类都有一个数与之对应但是两类数的个数不是一样多,因为M类 中0不能做首位,而W类中 9 可以做首位所以W类的数比M类的数要多,多的就是就是首位为 1 1 13 3 333n nn n aa (个 ) 的符合要求的数 计算首位为 1 0a 的W类的数的个数,首先要确定另外四个数,因
29、为要求各不相同,从除 9 外的其 它9个数字中选出4个,有 4 9 126C 种选法 对于每一种选法选出来的 4 个数,假设其大小关系为5,由于其中最小的数只能在千位和十位上, 最大的数只能在百位和个位上,所以符合要求的数有60类:千位、十位排 1 A、 2 A,有两种方法, 百位、十位排 3 A、 4 A,也有两种方法,故此时共有3种;千位、十位排0、 3 A,只能是千位 3 A, 百位 4 A,十位3,个位6,只有3种方法 根据乘法原理,首位为9的W类的数有12641630个 【答案】W 多,多630个 【例【例 14】用用 1 元元,2 元元,5 元元,10 元四种面值的纸币若干张元四种
30、面值的纸币若干张(不一定要求每种都有不一定要求每种都有),组成组成 99 元有元有P种方法种方法, 组成组成 101 元有元有Q种方法,则种方法,则QP 【考点】计数之不完全对应关系【难度】5 星【题型】填空 【关键词】学而思杯,6 年级,1 试 【解析】【解析】如果10元的取0张,即0z ,则21221z,即5元的有21种取法; 如果10元的取1张,即1z ,则21219z,即5元的有19种取法; 如果10元的取2张,即2z ,则21217z,即5元的有17种取法; 如果10元的取10张,即10z ,则2121z,即5元的有1种取法; 所以总数为 2 21 1917111121 ,那么121QP。 【答案】121