1、 - 1 - 高中物理高中物理 3-3 知识点知识点 第七章第七章 分子动理分子动理论论 1、物质是由大量分子组成的、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol任何物质含有的微粒数相同 231 6.02 10 A Nmol (3)对微观量的估算 分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) .球体模型直径d 3 6V0 . .立方体模型边长d 3 V0. 利用阿伏伽德罗常数联系宏观量与微观量 微观量:微观量:分子体积V0、分子直径d、分子质量m0. 宏观量:宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度
2、. a.分子质量: A mol N M m 0 A mol N V b.分子体积: A mol N V v 0 M NA(气体分子除外) c.分子数量: AAAA molmolmolmol MvMv nNNNN MMVV 特别提醒:特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。分子的体积V0Vm NA,仅适用于固体和 液体,对气体不适用,仅估算了气体分子所占的空间。 2、对于气体分子,d3V0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离. 2、分子永不停息的做无规则的热运动(布朗运动、分子永不停息的做无规则的热运动(布朗运动 扩散现象)扩散现象) (1)扩散现象:不同
3、物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有空隙,温度越高扩散越快。可以发生在固体、液体、气体任何两种物质之间可以发生在固体、液体、气体任何两种物质之间 (2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察显微镜下观察到的。 布朗运动的三个主要特点: 永不停息地无规则运动; 颗粒越小, 布朗运动越明显; 温度越高, 布朗运动越明显。 产生布朗运动的原因: 它是由于液体分子无规则运动对固体微小颗粒 各个方向撞击的不均匀 性造成的。 布朗运动间接间接地反映了液体分子的无规则运动, 布朗运动、扩散现象都有力地说明物体内大 量的分子都在永不
4、停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力、分子间的相互作用力 - 2 - (1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。 (2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大。但总是但总是斥斥 力变化得较快。力变化得较快。 (3)图像:两条虚线分别表示斥力和引力; 实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。 0 r位置叫做平衡位置, 0 r的数量级为 10 10m。 理解理解+记忆:记忆: (1)当 0 rr 时, 引 F 斥 F,F0; (2)当 0 rr 时,
5、 引 F和 斥 F都随距离的减小而增大,但 引 F 斥 F,F 表现为斥力; (3)当 0 rr 时, 引 F和 斥 F都随距离的增大而减小,但 引 F 斥 F,F 表现为引力; (4)当 0 10rr ( m)时, 引 F和 斥 F都已经十分微弱,可以认为分子间没有相互作用力(F0) 4、温度、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学 温度与摄氏温度的关系:273.15TtK 5、内能、内能 分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势 能的大小与分子间距离有关, 分子势能的大小变化可通
6、过宏观量体积来反映。 ( 0 rr时分子势能最小) 当 0 rr时,分子力为引力,当 r 增大时,分子力做负功,分子势能增加 当 0 rr时,分子力为斥力,当 r 减少时,分子力做负功,分子是能增加 当rr0时,分子势能最小,但不为零,为负值,因为选两分子相距无穷 远时分子势能为零 物体的内能 物体中所有分子所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规 则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) 改变内能的方式 做功与热传递都使物体的内能改变 特别提醒:特别提醒: (1)物体的体积越大,分子势能不一定就越大,如
7、 0 的水结成 0 的冰后体积变大,但分子势能 却减小了 (2)理想气体分子间相互作用力为零, 故分子势能忽略不计, 一定质量的理想气体内能只与温度有关 (3)内能都是对宏观物体而言的,不存在某个分子的内能的说法. 由物体内部状态决定 - 3 - 第八章第八章 气体气体 6、分子热运动速率的统计分布规律分子热运动速率的统计分布规律 (1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能 达到的整个空间 (2)分子做无规则的运动,速率有大有小,且时而变化,大量分子的速率按“中间多,两头少”的规律 分布 (3)温度升高时,速率小的分子数减少,速率大的分子数增加
8、,分子的平均速率 将增大(并不是每个分 子的速率都增大) ,但速率分布规律不变 7、气体实验定律气体实验定律 玻意耳定律:pVC(C 为常量)等温变化等温变化 微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这种情况下,体 积减少时,分子的密集程度增大,气体的压强就增大。 适用条件:压强不太大,温度不太低 图象表达: 1 p V 查理定律: p C T (C 为常量)等容变化等容变化 微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情况下,温度升 高时,分子的平均动能增大,气体的压强就增大。 适用条件:温度不太低,压强不太大 图象表达:p V 盖
9、吕萨克定律: V C T (C 为常量)等压变化等压变化 V1V2 -273 图 2 T TT T2T1 图 1 - 4 - 微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分 子的密集程度减少,才能保持压强不变 适用条件:压强不太大,温度不太低 图象表达:VT 8、理想气体、理想气体 宏观上:严格遵守三个实验定律的气体,实际气体实际气体在常温常压下(压强不太大、温度不太低压强不太大、温度不太低)实验 气体可以看成理想气体 微观上:理想气体的分子间除碰撞外无其他作用力理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都分子本身没有体
10、积,即它所占据的空间认为都 是可以被压缩的空间是可以被压缩的空间故一定质量的理想气体的内能只与温度有关,与体积无关(即理想气体的内能 只看所用分子动能,没有分子势能) 理想气体状态方程: pV C T ,可包含气体的三个实验定律: 几个重要的推论几个重要的推论 (1)查理定律的推论:pp1 T1T (2)盖吕萨克定律的推论:VV1 T1T (3)理想气体状态方程的推论:p0V0 T0 p1V1 T1 p2V2 T2 应用状态方程或实验定律解题的一般步骤应用状态方程或实验定律解题的一般步骤 (1)明确研究对象,即某一定质量的理想气体; (2)确定气体在始末状态的参量 p1、V1、T1 及 p2、
11、V2、T2; (3)由状态方程或实验定律列式求解; (4)讨论结果的合理性 9、气体压强的微观解释、气体压强的微观解释 大量分子频繁的撞击器壁的结果 影响气体压强的因素:气体的平均分子动能(宏观上即:温度)分子的密集程度即单位体积内 的分子数(宏观上即:体积) P1P2 P1P2 -273 图 3 - 5 - 第第九九章章 固态固态、液态液态和和物态物态变化变化 10、晶体和非晶体、晶体和非晶体 晶体内部的微粒排列有规则,具有空间上的周期性,因此不同方向上相等距离内微粒数不同,使得物理 性质不同(各向异性) ,由于多晶体是由许多杂乱无章地排列着的小晶体(单晶体)集合而成,因此不显 示各向异性,
12、形状也不规则。 晶体达到熔点后由固态向液态转化,分子间距离要加大。此时晶体要从外界吸收热量来破坏晶体的点阵 结构,所以吸热只是为了克服分子间的引力做功,只增加了分子的势能。分子平均动能不变,温度不变。 1111、液晶:介于固体和液体之间的特殊物态、液晶:介于固体和液体之间的特殊物态 物理性质具有晶体的光学各向异性在某个方向上看其分子排列比较整齐 具有液体的流动性从另一方向看,分子的排列是杂乱无章的 12、液体的表面张力现象和毛细现象、液体的表面张力现象和毛细现象 ()表面张力表面层(与气体接触的液体薄层)分子比较稀疏,rr0,分子力表现为引力,在这个 力作用下,液体表面有收缩到最小的趋势,这个
13、力就是表面张力。表面张力方向跟液面相切,跟这部分液 面的分界线垂直 ()浸润和不浸润现象: 附着层的液体分子比液体内部 分子力表现 附着层趋势 毛细现象 浸润 密 排斥力 扩张 上升 不浸润 稀疏 吸引力 收缩 下降 ()毛细现象:对于一定液体和一定材质的管壁,管的内径越细,毛细现象越明显。 管的内径越细,液体越高 土壤锄松,破坏毛细管,保存地下水分;压紧土壤,毛细管变细,将水 引上来 第十第十章章 热力学热力学定律定律 13、改变系统内能的两种方式:做功和热传递、改变系统内能的两种方式:做功和热传递 热传递有三种不同的方式:热传导、热对流和热辐射 这两种方式改变系统的内能是等效的 区别:做功
14、是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分) 之间内能的转移 14、热力学第一定律、热力学第一定律 表达式uWQ 几种特殊情况几种特殊情况 (1)若过程是绝热的,则 Q0,WU,外界对物体做的功等于物体内能的增加. (2)若过程中不做功,即 W0,则 QU,物体吸收的热量等于物体内能的增加 (3)若过程的始末状态物体的内能不变,即U0,则 WQ0 或 WQ,外界对物体做的功等 于物体放出的热量 15、热力学第二定律热力学第二定律 (1)常见的两种表述 克劳修斯表述(按热传递的方向性来表述):热量不能自发地从_低温低温_物体传到_高温高温_物体 符号 W Q u +
15、外界对系统做功 系统从外界吸热 系统内能增加 - 系统对外界做功 系统向外界放热 系统内能减少 - 6 - 开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从_单一热源单一热源_吸收热量,使之 完全变成功,而不产生其他影响 a、 “自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助 b、“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力 学方面的影响如吸热、放热、做功等 (2)热力学第二定律的实质 热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然 界中进行的涉及热现象的宏观过程都具有方向性
16、 (3)热力学过程方向性实例 (1)高温物体 热量Q能自发传给 热量Q不能自发传给低温物体 (2)功 能自发地完全转化为 不能自发地且不能完全转化为热 (3)气体体积 V1 能自发膨胀到 不能自发收缩到气体体积 V2(较大) (4)不同气体A和B 能自发混合成 不能自发分离成混合气体 AB 特别提醒:特别提醒:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温 物体传到高温物体,如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,如气体的等温膨胀 过程. 16、能量守恒定律能量守恒定律 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转 移到另一物体,在转化和转移的过程中其总量不变 第一类永动机不可制成是因为其违背了热力学第一定律 第二类永动机:违背宏观热现象方向性的机器被称为第二类永动机违背宏观热现象方向性的机器被称为第二类永动机这类永动机不违背能量守恒定能量守恒定 律律,不可制成是因为其违背了热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方 向进行) 熵是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 17、能量耗散、能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。