微积分下册多元函数微分法及其应用课件:2.偏导数.PPT

上传人(卖家):罗嗣辉 文档编号:2039883 上传时间:2022-01-19 格式:PPT 页数:33 大小:2.19MB
下载 相关 举报
微积分下册多元函数微分法及其应用课件:2.偏导数.PPT_第1页
第1页 / 共33页
微积分下册多元函数微分法及其应用课件:2.偏导数.PPT_第2页
第2页 / 共33页
微积分下册多元函数微分法及其应用课件:2.偏导数.PPT_第3页
第3页 / 共33页
微积分下册多元函数微分法及其应用课件:2.偏导数.PPT_第4页
第4页 / 共33页
微积分下册多元函数微分法及其应用课件:2.偏导数.PPT_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、一、偏导数的定义及其计算法一、偏导数的定义及其计算法同理可定义同理可定义函数函数),(yxfz 在点在点),(00yx处对处对y的偏导数,的偏导数, 为为yyxfyyxfy ),(),(lim00000 记为记为00yyxxyz ,00yyxxyf ,00yyxxyz 或或),(00yxfy. .00yyxxxz ,00yyxxxf ,00yyxxxz 或或),(00yxfx.同理可以定义函数同理可以定义函数),(yxfz 对自变量对自变量y的偏导的偏导数,记作数,记作yz ,yf ,yz或或),(yxfy.偏导数的概念可以推广到二元以上函数偏导数的概念可以推广到二元以上函数如如 在在 处处

2、),(zyxfu ),(zyx,),(),(lim),(0 xzyxfzyxxfzyxfxx ,),(),(lim),(0yzyxfzyyxfzyxfyy .),(),(lim),(0zzyxfzzyxfzyxfzz 例例1 . 1 . 求求223yyxxz解法解法1 1xz)2, 1 (xz解法解法2 2) 2, 1(xz在点在点(1,2)(1,2)处的偏导数处的偏导数. .) 2, 1(yz,32yx yzyx23 ,82312)2, 1 (yz72213462xx1)62(xx81xz231yy 2)23(yy72yz先求后代先求后代先代后求先代后求例例 2 2 设设yxz )1, 0(

3、 xx, 求求证证 zyzxxzyx2ln1 .证证 xz,1 yyx yz,ln xxyyzxxzyx ln1xxxyxyxyylnln11 yyxx .2z 原结论成立原结论成立解解 xz xyxxyxx2222211322222)(|yxyyyx .|22yxy |)|(2yy yz yyxxyxx222221132222)()(|yxxyyyx yyxx1sgn22 )0( y00 yxyz不存在不存在例例 4 4 已知理想气体的状态方程已知理想气体的状态方程RTpV (R为常数) ,求证:为常数) ,求证:1 pTTVVp.证证 VRTp;2VRTVp pRTV;pRTV RpVT;

4、RVpT pTTVVp2VRT pR RV . 1 pVRT 偏导数偏导数xu 是一个整体记号,不能拆分是一个整体记号,不能拆分;).0, 0(),0, 0(,),(,yxffxyyxfz求求设设例例如如 有关偏导数的几点说明:有关偏导数的几点说明:、 求分界点、不连续点处的偏导数要用求分界点、不连续点处的偏导数要用定义求;定义求;解解xxfxx0|0|lim)0 , 0(0 0 ).0 , 0(yf 、偏导数存在与连续的关系、偏导数存在与连续的关系例如例如,函数函数 0, 00,),(222222yxyxyxxyyxf,依定义知在依定义知在)0 , 0(处,处,0)0 , 0()0 , 0(

5、 yxff.但函数在该点处并不连续但函数在该点处并不连续. 偏导数存在偏导数存在 连续连续.一元函数中在某点可导一元函数中在某点可导 连续,连续,多元函数中在某点偏导数存在多元函数中在某点偏导数存在 连续,连续,4、偏导数的几何意义、偏导数的几何意义,),(),(,(00000上上一一点点为为曲曲面面设设yxfzyxfyxM 如图如图几何意义几何意义: :),(22yxfxzxzxxx ),(22yxfyzyzyyy ),(2yxfyxzxzyxy ),(2yxfxyzyzxyx 函函数数),(yxfz 的的二二阶阶偏偏导导数数为为纯偏导纯偏导混合偏导混合偏导定义:二阶及二阶以上的偏导数统称为

6、高阶定义:二阶及二阶以上的偏导数统称为高阶偏导数偏导数.二、高阶偏导数二、高阶偏导数例例 5设设13323 xyxyyxz,求求22xz 、xyz 2、yxz 2、22yz 及33xz .解解xz ,33322yyyx yz ;9223xxyyx 22xz ,62xy 22yz ;1823xyx 33xz ,62y xyz 2. 19622 yyxyxz 2, 19622 yyx原函数图形原函数图形偏导函数图形偏导函数图形偏导函数图形偏导函数图形二阶混合偏二阶混合偏导函数图形导函数图形观察上例中原函数、偏导函数与二阶混合偏导观察上例中原函数、偏导函数与二阶混合偏导函数图象间的关系:函数图象间的

7、关系:例例 6 6 设设byeuaxcos ,求求二二阶阶偏偏导导数数.解解,cosbyaexuax ;sinbybeyuax ,cos222byeaxuax ,cos222byebyuax ,sin2byabeyxuax .sin2byabexyuax 注意注意: :从例从例5 5和例和例6 6中看到中看到,22xyzyxz但这一结论并不总成立但这一结论并不总成立. .0,)(4222224224yxyxyyxxxyfyfxxy)0, 0(), 0(lim0),(yxfy例如例如, ,),(yxfx)0 , 0(yxfxfxffyyxxy)0, 0()0,(lim)0 , 0(0二者不等二者

8、不等yyy0lim1xxx0lim1),(yxf0, 022 yx4224222224,0()xx yyyxyxy0,022 yx0,222222yxyxyxyx0, 022 yx定理定理 如果函数如果函数),(yxfz 的两个二阶混合偏导数的两个二阶混合偏导数xyz 2及及yxz 2在区域在区域 D D 内连续,那末在该区域内这内连续,那末在该区域内这两个二阶混合偏导数必相等两个二阶混合偏导数必相等问题:问题:混合偏导数都相等吗?具备怎样的条件才混合偏导数都相等吗?具备怎样的条件才相等?相等?例例 6 6 验证函数验证函数22ln),(yxyxu 满足拉普拉满足拉普拉斯方程斯方程. 0222

9、2 yuxu解解),ln(21ln2222yxyx ,22yxxxu ,22yxyyu ,)()(2)(222222222222yxxyyxxxyxxu .)()(2)(222222222222yxyxyxyyyxyu 22222222222222)()(yxyxyxxyyuxu . 0 偏导数的定义偏导数的定义偏导数的计算、偏导数的几何意义偏导数的计算、偏导数的几何意义高阶偏导数高阶偏导数(偏增量比的极限)(偏增量比的极限) 纯偏导纯偏导混合偏导混合偏导(相等的条件)(相等的条件)三、小结三、小结若函数若函数),(yxf在 点在 点),(000yxP连连续,能否断定续,能否断定),(yxf在

10、点在点),(000yxP的偏导数必定存在?的偏导数必定存在?思考题思考题思考题解答思考题解答不能不能.,),(22yxyxf 在在)0 , 0(处处连连续续,例如例如,)(xuuf练习题练习题 设设, )(ufz 方程方程)(uu( )dxyp tt确定确定 u 是是 x , y 的函数的函数 ,)(, )(可微其中uuf)(),(utp连续连续, 且且, 1)( u求求.)()(yzxpxzyp解解:xzyuufyz)(xuuxu)()(xpyuuyu)()(ypxu)(1)(uxpyu)(1)(uyp)(uf yzxpxzyp)()(yuxpxuyp)()(0定理定理.证证: :令令),(

11、),(),(0000yxxfyyxxfyxF),(),()(00yxfyyxfx则则),(yxFxxx)(10 xyxxfyyxxfxx ),(),(010010yxyyxxfyx),(2010),(),(0000yxfyyxf),(),()(00yxfyxxfy)10(1)1,0(21,),()()(00连续都在点和若yxx,yfx,yfxyyx),(),(0000yxfyxfxyyx则则)()(00 xxx又令又令同样同样),(),(),(0000yxxfyyxxfyxF),(),(0000yxfyyxf)()(00yyyyxyyxxfxy),(4030) 1,0(43),(),(0000

12、yxfyxfxyyx)()(因yxfyxfxyyx, 0 x故令),(4030yyxxfxy),(2010yyxxfyx在点在点)(00yx ,连续连续, ,得得0y一一、 填填空空题题: :1 1、 设设yxztanln , ,则则 xz_ _ _ _ _ _ _ _ _; ; yz_ _ _ _ _ _ _ _ _ _. .2 2、 设设 xzyxezxy则则),(_ _ _ _ _ _ _ _; ; yz_ _ _ _ _ _ _ _ _. .3 3、 设设,zyxu 则则 xu_ _ _ _ _ _ _ _ _ _ _; ; yu_ _ _ _ _ _ _ _ _ _ _; ; zu_

13、 _ _ _ _ _ _ _ _ _ _ _ _. .4 4、 设设,arctanxyz 则则 22xz_ _ _ _ _ _ _ _ _; ; 22yz_ _ _ _ _ _ _ _; ; yxz2_ _ _ _ _ _ _ _ _ _ _ _ _. . 练练 习习 题题 5 5、设、设zyxu)( , ,则则 yzu2_. .二、二、 求下列函数的偏导数求下列函数的偏导数: : 1 1、yxyz)1( ; 2 2、zyxu)arctan( . .三、三、 曲线曲线 4422yyxz, ,在点在点(2,4,5)(2,4,5)处的切线与正向处的切线与正向x轴所成的倾角是多少轴所成的倾角是多少?

14、 ?四、四、 设设xyz , ,求求.,22222yxzyzxz 和和五、设五、设)ln(xyxz , ,求求yxz 23和和23yxz . .六、六、 验证验证: : 1 1、)11(yxez , ,满足满足zyzyxzx222 ; 2 2、222zyxr 满足满足 rzzryrxr 222222. .七、设七、设 0, 00,arctanarctan),(22xyxyyxyxyxyxf 求求xyxff ,. .一、一、1 1、yxyxyxy2csc2,2csc22 ;2 2、)1(2 yxyexy, ,)1(2 xxyexy;3 3、xxzxzyzyzyln1,1 , , xxzyzyln

15、2 ;4 4、22222222222)(,)(2,)(2yxxyyxxyyxxy ;5 5、)ln1()(yxyzyyxz . .二、二、1 1、 xyxyxyxyyzxyyxzyy1)1ln()1(,)1(12; ;练习题答案练习题答案 2 2、zzyxyxzxu21)(1)( , , ,)(1)(21zzyxyxzyu zyxyxyxzu2)(1)ln()( . .三、三、4 . .四、四、,)1(,ln222222 xxyxxyzyyxz )1ln(12 yxyyxzx. .五、五、223231, 0yyxzyxz . .七、七、 0, 0; 0, 00, 0,0,arctan2yxyxyxyxyyxyxfx, , 0, 0, 10,0, 12222yxxyyxyxxfxy. .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(微积分下册多元函数微分法及其应用课件:2.偏导数.PPT)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|