1、误差理论与测量平差基础习题集参考答案第七章7.1.04:2, 3tn,设21,PP点的高程为21,XX,1011xXX,2022xXX,)(352.11101mhHXA,)(826.10302mhHXA取2C,211diagP ,202332021012210111xXHvhxXxXvhHxXvhAA,2321211)(5xvmmxxvxv05010110121321xxvvv,55311221xx,)(125521135121mmxx7.1.06:1, 2tn,设P点的高程为X,BAHXvhHXvh2211,)()(2211hHXvhHXvBA,212111hHhHXvvBA,211001S
2、SP,)(1)(122112121hHShHSXSSSSBA,)()(22111212hHSSShHSSSXBA,)()(212122212111hHhHSSSvhHhHSSSvBABA,)(212111hHhHSSShHBAP7.2.13:9,11tn,7.2.14:6,11tn,按前方交会或侧方交会找独立的角度。7.2.16:2, 3tn,设TTLLXXX3121,TTLLXXX3103010,Txxx21 ,222122XXL,231123212222222xLxLLLvLL,)(2122232122231212LLLLxLLxLLv7.2.17:必要元素:7 个,直线的两个参数ba,,
3、确定直线上 5 个点的x坐标。起算数据 5个(直线上 5 个点的x坐标) ,必要观测 2 个。40. 8510. 7490. 5356. 4230. 354321bavbavbavbavbav讨论:如果各点的yx,坐标均为未知数,则3, 7,10rtn。采用条件平差,需列 3 的条件方程,线段4 , 1 , 3 , 1 , 2 , 1的斜率相等。7.2.24:3, 4, 7trn,任取 3 个函数独立的改正数作为参数,将方程化成误差方程的形式。如:372211,XVXVXV7.2.25:3, 2, 5rtn,将1, 32211VXVX代入后三个方程。7.3.32:(1)4112712114)(
4、11 PBBQTxx(2)741131711141121171Q7.3.33:3223513223)(11 PBBQTxx,XBL,231111325132230111111051XXXLBQQ,0VLQ3112122112212113510111111023111132510111111032230111111051TXXLLBBQQ7.3.35:XXXLBQQ,相关,0VLQ,不相关。7.3.38:7228BBN,8227521XXQ,521111822711521Q,1152P7.3.39:DBDCDBDCDBDCBDC00,DDDBDCyxd97. 758. 27.3.41:令:iii
5、iiiyYYxXX, 0022)()(CDCDCDYYXXS,)( 2)( 2)()(2122CDCDCDCDCDCDCDYdYdYYXdXdXXYYXXdSDCDCDDCDCDCCDCDCCDCDCDydSYxdSXydSYxdSXdS000000007.10.72:见习题集 81 页7.10.73:取2C,1221diagP 432121432101101101llllxxvvvv,验证0PVBT。7.10.74:取4C,)(16242220mm65432121654321101001111001llllllxxvvvvvv,4113PBBT,3114111 xxQ,)(116411416
6、2112021mmQP,)(1148113162222022mmQP第八章8.1.04:(a)4, 3ut,021AOCLL;(b)4, 3ut,0541BAHhhhH8.1.05:5, 4ut,427180iiXL,以A点为极点列极条件方程。8.1.06:3, 2ut,018031iiX8.1.07:(a)3, 1ut,031LL,022221SLL。(b)假设x坐标无误差,2, 1ut,bay5 . 30。8.3.28:0 xWxClxBV,)(2xTsTWxCKPVV,022CKPBVxTsT,0sTTKCPVB法方程:00 xTsTTWxCPlBKCxPBB,00 xsTBBWxCWK
7、CxN)(1sTBBKCWNx,0)(11xBBsTBBWWCNKCCN,0)(1xBBsCCWWCNKN)(11xBBCCsWWCNNKxCCTBBBBCCTBBBBxCCTBBBBCCTBBBBWNCNWCNNCNNWNCNWCNNCNWNx111111111111)(1111 BBCCTBBBBxxCNNCNNQxCCTBBBBCCTBBWNCNWCNNCNx11111111 BBCCTBBxxCNNCNQlxBV,lWNCBNWCNNCNNBVxCCTBBBBCCTBBBB111111)(VLL8.3.38:第九章9.2.05:13, 2, 8, 7, 8,15csurtn,独立参数个
8、数为 6,小于必要观测数。采用附有限制条件的条件平差模型。列 13 个一般条件方程, 2 个限制条件方程。 法方程个数:232813suc。9.5.21:第十章:10.2.07:LSu,)(44200000100020022222mmSu,)(922mmS,)(13942222mmsuP,)(13 mmP。10.2.08:)(43) 12(412222dmyxP,)(23dmP。10.2.09:433. 143123214132322sinsincos22xyyyxxQQQQ3583. 0)431 (41202Q,)(598. 0dmP10.2.11:2225. 04)25. 175. 1 (
9、4)(2222xyyyxxQQQK)(223)2225. 175. 1 (22)(2220202cmKQQQEyyxxEE,)(92. 1cmE )(223)2225. 175. 1 (22)(2220202cmKQQQFyyxxFF,)(51. 1cmF 22541431223tanxyxxEEEQQQ141424342472sinsincos22xyyyxxQQQQ,)(245cm10.2.13:000yyxxQQ,0)(yyxxQQ,xxEEQQ1,yyFFQQ20000yyxQQQQEEyyEExx,90E,0000 xyxQQQQFFyyFFxx,90F。10.2.14:3002D,
10、)(522cmP,)(3 cmE ,)(2 cmF ,90F。10.2.21:)(211231211221cmQD,(1)032313132,031)32(2,11EEQ,312FFQ。01323131132yx,xy,135E。(2))(3422cmP(3)25或32522222sincosFEQDPASPASSPA10.2.22:224mmAPs,22222216)2000002400000(mmSAPuAP(1)222220mmAPAPusP。(2)mmE4,mmF2,45F,135E(3)135EPC,mmEPC4,15000016000004PCPCS。10.7.46:9012,)(2212cmQQXXs,(1)20000110025002012012SQs,84. 80。(2)1, 30211221,135,032113212Exyyx,202202,3FE。10.7.47:2, 40311321,)(2),(42222mmFmmE45,0431143Exyyx)(2730sin30cos222222mmFEPAS,)(87. 1mmPAS。)(25120sin120cos222222mmFEPAu,)(58. 1mmPAu。58. 158. 1200000200000PAPAPAS。