1、正弦定理第一章第一章: :解三角形解三角形正弦定理 1.1.问题的引入问题的引入: : .(1)在我国古代就有嫦娥奔月的神话故事在我国古代就有嫦娥奔月的神话故事.明月明月 高悬高悬,我们仰望夜空我们仰望夜空,会有无限遐想会有无限遐想,不禁会问不禁会问, 月亮离我们地球有多远呢月亮离我们地球有多远呢?科学家们是怎样科学家们是怎样 测出来的呢?测出来的呢?正弦定理(2)(2)设设A,BA,B两点在河的两岸两点在河的两岸, , 只给你米尺和量角设备只给你米尺和量角设备, ,不过河你可以测出它们之间的距离吗不过河你可以测出它们之间的距离吗? ?AB我们这一节所学习的内容就是解决这些问题我们这一节所学习
2、的内容就是解决这些问题的有力工具的有力工具.正弦定理回忆一下直角三角形的边角关系回忆一下直角三角形的边角关系? ABCcbasinacA 两等式间有联系吗?两等式间有联系吗?sinsinabcAB sin1C sinsinsinabcABC 思考思考:对一般的三角形对一般的三角形,这个结论还能成立吗这个结论还能成立吗?2.定理的推导定理的推导1.1.1 正弦定理正弦定理sinbcB 正弦定理(1)当当 是锐角三角形时是锐角三角形时,结论是否还成立呢结论是否还成立呢?ABC D如图如图:作作AB上的高是上的高是CD,根椐根椐三角形的定义三角形的定义,得到得到.sinsinbcAEBCBC 同同理
3、理, , 作作有有 sinsinsinabcABC 1.1.1 正弦定理正弦定理sin ,sinCD aBCD bA sinsinaB bA 所所以以 sinsinabAB 得得到到 BACabcE正弦定理(2)当当 是钝角三角形时是钝角三角形时,以上等式是否仍然成立以上等式是否仍然成立?ABCBACbca1.1.1 正弦定理正弦定理D正弦定理(1 1)文字叙述文字叙述正弦定理:正弦定理:在一个三角形中,各边和它所对角在一个三角形中,各边和它所对角 的正弦的比相等的正弦的比相等. .(2)结构特点)结构特点(3 3)方程的观点)方程的观点正弦定理实际上是已知其中三个正弦定理实际上是已知其中三个
4、, ,求另一个求另一个. .能否运用向量的方法来证明正弦定理呢能否运用向量的方法来证明正弦定理呢?和谐美、对称美和谐美、对称美. .正弦定理正弦定理:CcBbAasinsinsin 正弦定理在锐角三角形中在锐角三角形中. 的的夹夹角角为为与与,的的夹夹角角为为与与,的的夹夹角角为为与与ABjCBjACjC 90A 9090由向量加法的三角形法则由向量加法的三角形法则ABCBAC ABjCBjACjABjCBACjj 得得的的数数量量积积两两边边同同取取与与,)90cos()90cos(90cosAABjCCBjACj 定定义义)(根根据据向向量量的的数数量量积积的的CcAaAcCasinsin
5、sinsin 即即在在锐锐角角三三角角形形中中,可可得得垂垂直直于于点点作作过过同同理理 ,sinsin,BbCcCBjCCcBbAasinsinsin 也也有有jBACabc,于于垂垂直直作作单单位位向向量量证证明明:过过点点ACjA正弦定理在钝角三角形中在钝角三角形中ABCj的的夹夹角角为为与与的的夹夹角角为为与与则则垂垂直直的的单单位位向向量量作作与与过过点点设设CBjABjjACAA,900 90 AC 90正弦定理剖析定理、加深理解sinsinsinabcABC1 1、A+B+C=A+B+C=2 2、大角对大边,大边对大角、大角对大边,大边对大角正弦定理:正弦定理剖析定理、加深理解3
6、 3、正弦定理可以解决三角形中的问题:、正弦定理可以解决三角形中的问题: 已知已知两角和一边两角和一边,求其他角和边,求其他角和边 已知已知两边和其中一边的对角两边和其中一边的对角,求另一边,求另一边的对角,进而可求其他的边和角的对角,进而可求其他的边和角sinsinsinabcABC正弦定理:正弦定理剖析定理、加深理解4 4、一般地,把三角形的三个角、一般地,把三角形的三个角A A,B B,C C和它们的对边和它们的对边a a,b b,c c叫做叫做三角形的元三角形的元素素。已知三角形的几个元素求其他元素。已知三角形的几个元素求其他元素的过程叫的过程叫解三角形解三角形sinsinsinabc
7、ABC正弦定理:正弦定理剖析定理、加深理解5 5、正弦定理的变形形式、正弦定理的变形形式6 6、正弦定理、正弦定理,可以用来判断三角形的,可以用来判断三角形的形状,其主要功能是实现三角形边角关形状,其主要功能是实现三角形边角关系的转化系的转化sinsinsinabcABC正弦定理:正弦定理例例1 1 在在 已已知知 , , 解三角形解三角形. ABC 0030 ,135 ,2ABa 通过例题你发现了什么一般性结论吗通过例题你发现了什么一般性结论吗?小结小结:知道三角形的两个内角和任何一边,利:知道三角形的两个内角和任何一边,利 用正弦定理可以求出三角形中的其它元素。用正弦定理可以求出三角形中的
8、其它元素。1.1.1 正弦定理正弦定理3.定理的应用举例定理的应用举例变式:变式:若将若将a=2 改为改为c=2,结果如何?,结果如何?正弦定理例 2 已知a=16, b= , A=30 .解三角形已知两边和其中一边已知两边和其中一边的对角的对角,求其他边和角求其他边和角解:由正弦定理BbAasinsin得231630sin316sinsinaAbB所以60,或120当 时60C=90.32cC=30.16sinsinACac316当120时B16300ABC1631683正弦定理变式: a=30, b=26, A=30,解三角形300ABC2630解:由正弦定理BbAasinsin得3013
9、3030sin26sinsinaAbB所以25.70, 或180025.70=154.30由于154.30 +3001800故B只有一解(如图)C=124.30,57.49sinsinACac30137 .25sin小结小结:已知两边和其中一边的对角,可以求出已知两边和其中一边的对角,可以求出三角形的其他的边和角。三角形的其他的边和角。正弦定理4.基础练习题基础练习题1.1.1 正弦定理正弦定理00(1)45 ,2,2,10 3(2)60 ,4,3ABCAabBABCAabB在中,已知 求在中,已知求B=300无解无解正弦定理5.探究课题引入时问题探究课题引入时问题(2)的解决方法的解决方法A
10、BCbc1.1.1 正弦定理正弦定理bsinbsin AB =AB =sin(sin( + + ) )正弦定理 正弦定理正弦定理 主要应用主要应用 s i ns i ns i nabcABC (1) 已知两角及任意一边,可以求出其他两边已知两角及任意一边,可以求出其他两边和另一角;和另一角; (2)已知两边和其中一边的对角,可以求出三已知两边和其中一边的对角,可以求出三角形的其他的边和角。角形的其他的边和角。(此时可能有一解、二解、此时可能有一解、二解、无解)无解) 1.1.1 正弦定理正弦定理小结小结:正弦定理课后探究课后探究:sinsinsinabckABC那么这个那么这个k值是什么呢值是
11、什么呢?你能用一个和三角形有你能用一个和三角形有关的量来表示吗关的量来表示吗?作业:作业:P10 2 (1)你还可以用其它方法证明)你还可以用其它方法证明正弦定理吗?正弦定理吗?(2)正弦定理在例在例 2 2 中,将已知条件改为以下几种情况,不计算判中,将已知条件改为以下几种情况,不计算判断有几组解?断有几组解? 60ABCb(3 3) b b2020,A A6060,a a15.15.(1 1) b b2020,A A6060,a a ; ;320(2 2) b b2020,A A6060,a a ; ; 310正弦定理(3 3) b b2020,A A6060,a a15.15.6020AC(1 1) b b2020,A A6060,a a ; ;32060203A20BC(2 2) b b2020,A A6060,a a ; ; 310BC60A20一解一解一解一解无解无解正弦定理900 A90AabsinAa=bsinA bsinAab无解无解一解一解两解两解一解一解无解无解一解一解AC条件图形解的个数总结总结ACBBCAACDB2B1CADABCD正弦定理